CSE 167:
Introduction to Computer Graphics
Lecture #13: Bezier Curves

Juargen P. Schulze, Ph.D.
University of California, San Diego
Spring Quarter 2015

Announcements

» Homework 6 due Friday at |pm

» Monday: Midterm review
Midterm on Thu May 20%

] = UCSD

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction

Drawing Bézier curves

Piecewise Bézier curves

= UCSD

Linear Interpolation

» Three equivalent ways to write it
Expose different properties

I. Regroup for points p
x(t) = po(l —t) + pit

2. Regroup for ¢
x(t) = (P1 — Po)t + Po

3. Matrix form

e m 4]
* = UCSD

Weighted Average

x()=1-t)p,+ (©)p,
= B,(t) p, + B,(t)p,, where B,(t)=1—t and B,(t)=t

» Weights are a function of ¢

Sum is always |, for any value of ¢

Also known as blending functions

0.5 P
By Bt)
0.6} 7
o.af o~
e
.-"'F’.
0.z} o
-_____.i"
--.-J-'--
5 0.2 0.4 0.6 0.8 1l

Linear Polynomial

X()=(P,—Py) I+ Py
Nt B

%/._/
vector point
a b

» Curve is based at point p,,
» Add the vector, scaled by ¢

PP

Po —
T .5(py-py)

i = UCSD

Matrix Form

<o =[pom]| ||} —cB

» Geometry matrix G = | Po Pi }

L -1 1
» Geometric basis B =

1 0
» Pol ' '
olynomial basis T { t }
1
» In components Doz Dle 11T
o= Rl
| Poz D1z |

7 = UCSD

Matrix Form

<o =[pom]| ||} —cB

» Geometry matrix G = | Po Pi }

L -1 1
» Geometric basis B =

1 0
» Pol ' '
olynomial basis T { t }
1
» In components Doz Dle 11T
o= Rl
| Poz D1z |

8 = UCSD

Tangent

» For a straight line, the tangent is constant
/
X (t) = p1 — Po

» Weighted average x'(t) = (=1)po + (+1)py

» Polynomial X,(t) = 0t + (p1 — Po)

» Matrix form X,(t) = [PO P1 } { _11 é} { (1)}

i = UCSD

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction
Drawing Bézier curves

Piecewise Bézier curves

10

= UCSD

Bézier Curves

» Are a higher order extension of linear interpolation

. P1
1N
1N
AY
! \

P1

Po

Linear Quadratic Cubic

) = UCSD

Bézier Curves

» Give intuitive control over curve with control points

Endpoints are interpolated, intermediate points are
approximated

Convex Hull property

» Many demo applets online, for example:
Demo:

" = UCSD

Cubic Beézier Curve

» Most commonly used case

» Defined by four control points:
Two interpolated endpoints (points are on the curve)
Two points control the tangents at the endpoints

» Points X on curve defined as function of parameter ¢

Po X(1)

" P; = UCSD

Algorithmic Construction

» Algorithmic construction

14

De Casteljau algorithm, developed at Citroen in 1959,
named after its inventor Paul de Casteljau (pronounced
“Cast-all-’Joe”)

Developed independently from Beézier’s work:

Bézier created the formulation using blending functions,
Casteljau devised the recursive interpolation algorithm

= UCSD

De Casteljau Algorithm

» A recursive series of linear interpolations

Works for any order Bezier function, not only cubic

» Not very efficient to evaluate

Other forms more commonly used

» But:
Gives intuition about the geometry

Useful for subdivision

” = UCSD

De Casteljau Algorithm

» Given:

Four control points
A value of 1 (here =0.25)

Po

16

P>

De Casteljau Algorithm

a
q,(1)= Lerp(t,po:P1) py”

q,(t)= Lerp(t,p,,p,)
q,(t)= Lerp(t,p,,p;)

! = UCSD

De Casteljau Algorithm

r, (1) = Lerp (t,4,(1),q,(1))
r,(1) = Lerp (t,q, (1), q, (1))

18

De Casteljau Algorithm

—————

x(t) = Lerp(t,x,(t),r,(t))

" = UCSD

De Casteljau Algorithm

» Applets

Demo:

20

~
~
~
~
~
~
~
~

~

~
?
’
’
’
’

Recursive Linear Interpolation

P
qO:Lerp(tapO’pl) :

rO:Lerp(fa(Io’ql)q —Lerp(t PP)
= M1 M)

=L [T,
X el”p(Iy rl)l'l — Lerp(t,qp‘h)

P
q2 = Lerp(t,pzaPS) ’
P
/pl
/QO\
/ro\ /pz
X \ /‘h\
rl\ P3
(h/
\p4

21

= UCSD

Expand the LERPs

q,(t) = Lerp(t,py»p,)= (1—1)p, +1p,
q,(t)= Lerp(t,p,.p,)=(1—1)p, +p,
q,(t)= Lerp(t,p,.p;)=(1—1)p, +p,

r,(t)= Lerp(t,q,(1).q,())=(1-1)((1-t)p, +tp,)+t ((1-1)p, +1p,)
r,(t)= Lerp(t,q,(t),q,(®))=(1—t)(1-t)p, +tp,)+t (1 - 1)p, + tp;)

x(t)= Lerp(t,r,(t),1,(1))
=(1-0)(-)((-1)p, +p,)+ 1((1—1)p, +1p,))
+t((-2)((1=1)p, +1p,)+ 1((1-1)p, +1p,))
= =< UCSD

Weighted Average of Control Points

» Regroup for p:
x(t)=(1-t)((1-1)(1-1)p, +p,)+ 1((1—1)p, +1p,))

+ (1=1)((1=1)p, + 1,)+1((1-1)p, +m,))

x®)=(0-1)p, +30—-1) 1, +3(1-1)*p, +1°p,

BOJEt) BljSt)

x(1) = (—t3 +317 =3t + 1)p0 + (3t3 — 61 + 3t>p1

+(=363 + 3¢)p, + (7)p,

Bzv(t) B; (1)

s < UCSD

Cubic Bernstein Polynomials

x(t)= B, (1)p, + B,(¢)p, + B, (t)p, + B, (1)p;

The cubic Bernstein polynomials :
B, (t)=—t>+3t"-3t+1
B, (t)=3t> -6t +3t
B,(t)=-3t+3¢t
B,(t)=t"

Y B()=1

0.6

0.2

0.81

0.4

Bernstein Cubic Polynomials

» Weights B.(t) add up to | for any value of t

24

= UCSD

General Bernstein Polynomials

By(r)=-t+1 By(t)=1"-2r+1
B ()=t B’ (t)=-2t*+2¢
B ()=
o~ |
°-4 f//; / 0.4 RN
B (¢
(=
> B (1)=1
25

B(t)=—t+3t>-3t+1
B (t)=3t" -6t + 3t
B)(t)=-3t"+3¢t

Bi(t)=t

Bernstein Cubic Polynomials

n\ n!

" o
)(l_t) (t) i) T =)

n! = factorial of n
(n+1)! =nlx (n+1)

= UCSD

General Bézier Curves

» nth-order Bernstein polynomials form nth-order
Beézier curves

B O=")0-0"0
x()=25 O,

” = UCSD

Bézier Curve Properties

Overview:
» Convex Hull property
» Affine Invariance

7 = UCSD

Definitions

» Convex hull of a set of points:

Polyhedral volume created such that all lines connecting any
two points lie completely inside it (or on its boundary)

» Convex combination of a set of points:

Weighted average of the points, where all weights between 0
and |, sum up to |

» Any convex combination of a set of points lies within the
convex hull

” = UCSD

Convex Hull Property

» A Bezier curve is a convex combination of the control points
(by definition, see Bernstein polynomials)

» A Bezier curve is always inside the convex hull

Makes curve predictable

Allows culling, intersection testing, adaptive tessellation

» Demo:

” = UCSD

Affine Invariance

Transforming Bézier curves

» Two ways to transform:

Transform the control points, then compute resulting spline
points

Compute spline points, then transform them
» Either way, we get the same points

Curve is defined via affine combination of points

Invariant under affine transformations (i.e., translation, scale,
rotation, shear)

Convex hull property remains true

” = UCSD

Cubic Polynomial Form

Start with Bernstein form:

x(t)= (=1 +3> = 3t + 1)p, + (317 = 617 + 3t)p, + (=3¢ + 3¢* Jp, + (* Jp,

Regroup into coefficients of 7 :

x(t)= (-p, +3p, = 3p, +p;)’ +(3p, — 6p, + 3p,)t* +(-3p, + 3p,)t + (p,)1

a:(—pO + 3p, — 3p, +p3)
b=(3p, - 6p, + 3p,)

c= (—3pO + 3p1)

d=(p0)

» Good for fast evaluation
Precompute constant coefficients (a,b,c,d)
» Not much geometric intuition

7 = UCSD

x(t)=at’ +bt* +ct+d

Cubic Matrix Form

£ 5:(_p0+3p1_3p2+p3)
2 b=(3p, - 6p, +3
«=[a b ¢ d]r # (3p, — 6p, +3p,)
t ¢=(-3p, +3p,)
1 d:(po)
1 3 =3 1][#]
(t)—[] 3 6 3 0}r¢
XZ)=1Py P P, P; 3 3 0l
1 0 0 0]1
~ AN ~ J;’_J_
GBez BBez T

» Other types of cubic splines use different basis matrices By,

” = UCSD

Cubic Matrix Form

» In 3D: 3 equations for x,y and z:

Xx(t): [pOx plx

x,()=|p,, D,

x,()=[p,, P

33

p2x

p3x]

P, p3y:|

p2z

p3z:|

Matrix Form

» Bundle into a single matrix

pOx plx p2x p3x 3 _6
XW)=|Poy Py Poy Pyl 5 4
pOZ plz pZZ p3Z 1 O

X(t) = GBezBBeZT
x1)=CT

» Efficient evaluation

Pre-compute C
Take advantage of existing 4x4 matrix hardware support

" = UCSD

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction
Drawing Bézier curves

Piecewise Bézier curves

35

= UCSD

Drawing Bezier Curves

» Draw line segments or individual pixels
» Approximate the curve as a series of line segments
(tessellation)
Uniform sampling
Adaptive sampling

Recursive subdivision

” = UCSD

Uniform Sampling

» Approximate curve with N straight segments
N chosen in advance

Evaluate
N
X —a

Connect the points with lines

» Too few points!?
Poor approximation

“Curve’” is faceted

» Too many points!?
Slow to draw too many line segments

Segments may draw on top of each other

37

x, =x(t,) where ¢, =L fori =0,1,..., N

Adaptive Sampling

» Use only as many line segments as you need
Fewer segments where curve is mostly flat
More segments where curve bends

Segments never smaller than a pixel

X(1)

> = UCSD

Recursive Subdivision

» Any cubic curve segment can be expressed as a
Bézier curve

» Any piece of a cubic curve is itself a cubic curve

» Therefore;:

Any Bézier curve can be broken down into smaller Bézier
curves

> = UCSD

De Casteljau Subdivision

~
~
~
~
~
~
~
~

~

~
?
’
’
’
’

» De Casteljau construction points 4
are the control points of two Bézier

sub-segments

? = UCSD

Adaptive Subdivision Algorithm

» Use De Casteljau construction to split Bézier segment in
half
» For each half
If “flat enough”: draw line segment
Else: recurse
» Curve is flat enough if hull is flat enough

Test how far the approximating control points are from a straight
segment

If less than one pixel, the hull is flat enough

3 = UCSD

Drawing Bezier Curves With OpenGL

» Indirect OpenGL support for drawing curves:
Define evaluator map (g1Map)
Draw line strip by evaluating map (g1EvalCoord)
Optimize by pre-computing coordinate grid (g1MapGrid and
glEvalMesh)

» More details about OpenGL implementation:

* = UCSD

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction
Drawing Bézier curves

Piecewise Bézier curves

43

= UCSD

More Control Points

» Cubic Bézier curve limited to 4 control points

Cubic curve can only have one inflection (point where curve changes
direction of bending)

Need more control points for more complex curves

» k-1 order Bézier curve with k control points

End control segments
control end-tangents

» Hard to control and hard to work with
Intermediate points don’t have obvious effect on shape
Changing any control point changes the whole curve

Want local support: each control point only influences nearby portion of
curve

h = UCSD

Piecewise Curves

» Sequence of line segments
Piecewise linear curve

TN

» Sequence of simple (low-order) curves, end-to-end
Known as a piecewise polynomial curve
» Sequence of cubic curve segments

Piecewise cubic curve (here piecewise Bézier)

» L]
N
» e
f

» = UCSD

Parametric Continuity

» COcontinuity:
Curve segments are connected
» C! continuity:
CO & Ist-order derivatives agree
Curves have same tangents
Relevant for smooth shading
» C2 continuity:
C! & 2nd-order derivatives agree
Curves have same tangents and curvature
Relevant for high quality reflections

Co contirmitk--\ Co & C; continuity

=) - =

Cp & C; & C,continuity

Overview

» Piecewise Bezier curves

» Bezier surfaces

Y = UCSD

Global Parameterization

» Given N curve segments X,(1), X,(?), ..., Xy_;(?)
» Each is parameterized for 7 from O to |

» Define a piecewise curve
Global parameter u from 0 to N

(x, (1), 0<uc<l

—-1), ISu<?2

Xy (u—-(N-1)), N-1<u<N

x(u)=x,(u—i), wherei=|u| (andx(N)=x, (1))

» Alternate: solution u also goes from 0O to |
x(u) = x,(Nu—i), where i=| Nu |

” = UCSD

Piecewise-Linear Curve

» Given N+1 points py, Pys -+ Py

» Define curve
X(u)= Lerp(u—1,p,,P,.,) iSu<i+l

=(—u+ip,+w—ip;,,, i=|u]

x(2.9)

x(1.5)

Po Ps

» N+1 points define N linear segments

» X(1)=p;
» COcontinuous by construction

» Clat p, when p-p,.; = P, P;

" = UCSD

Piecewise Bézier curve
e Given 3N +1 points p,,P,».--> Py
e Define N Bézier segments:
X,(t) = B,(t)p, + B,(1)p, + B,(1)p, + B;(1)p;
X,(t)=B,(1)p, + B,(1)p, + B,(1)ps + B;(1)P;

XN_1(t) — B()(t)p3N—3 + Bl(t)p3N—2 + Bz(t)p3N—1 + B3(t)p3N

® Ps
T
XH(f) ™
P P, Pig g
1
N o s
R0 \\33) g P2
Pt N X (1L Pio Py
° &
Py 5

7 = UCSD

Piecewise Beézier Curve

» Parameter in O<=u<=3N
X, (3u), O0<u<3

X(u):ﬁ(l(gu—l), 3@36

Xy Gu—(N-1)), 3N-3<u<3N

x(u)=x,(lu—i), wherei=|1u|

. X(8.75)
o)\./
—— % ’ = _X3(1)
& x(0) e X / e
U=
x(3.5)

) = UCSD

Piecewise Beézier Curve

3N+1 points define N Beézier segments =
X(3i)=p; A e
C, continuous by construction

C, continuous at p3; when ps; - P = P3iy; - P3;
C, is harder to achieve

Py P,

C, discontinuous C, continuous

> = UCSD

Piecewise Bezier Curves

» Used often in 2D drawing programs

» Inconveniences

Must have 4 or 7 or 10 or I3 or ... (I plus a multiple of 3)
control points

Some points interpolate, others approximate

Need to impose constraints on control points to obtain C!
continuity

C, continuity more difficult
» Solutions

User interface using “Bézier handles”
Generalization to B-splines or NURBS

v = UCSD

Bézier Handles

» Segment end points
(interpolating)
presented as curve
control points

» Midpoints
(approximating
points) presented as
“handles”

» Can have option to
enforce C, continuity

54

Adobe Illustrator

= UCSD

Piecewise Beézier Curve

3N+1 points define N Beézier segments =
X(3i)=p; A e
C, continuous by construction

C, continuous at p3; when ps; - P = P3iy; - P3;
C, is harder to achieve

Py P,

C, discontinuous C, continuous

> = UCSD

Rational Curves

» Weight causes point to “pull” more (or less)
» Can model circles with proper points and weights,

» Below: rational quadratic Bézier curve (three control points)

W1=2'0 w1=1.0 W1=0'5
W1=,0'0 W1=,'0' 5

_

” = UCSD

B-Splines

» B as in Basis-Splines
» Basis is blending function
» Difference to Bézier blending function:

B-spline blending function can be zero outside a particular
range (limits scope over which a control point has influence)

» B-Spline is defined by control points and range in which
each control point is active.

57 = UCSD

NURBS

Non Uniform Rational B-Splines
Generalization of Bézier curves

Non uniform:

v v v Vv

Combine B-Splines (limited scope of control points) and
Rational Curves (weighted control points)

» Can exactly model conic sections (circles, ellipses)
» OpenGL support: see gluNurbsCurve

» Demo:

> = UCSD

