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Announcements
 Project 3 late grading tomorrow, Friday at 2pm
 In CSE basement labs
 Sign up on autograder.ucsd.edu
 Grading ends at 3:15pm

 Midterms likely to be returned next Tuesday
 No discussion next Monday (Veterans Day)
 Will go over project 3 in class today and/or on Tuesday
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Project 3 Robot Contest

 Voting has closed

 The winners have been determined!
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Robot Contest: Tie for 4th place
 Each received 9.1% of the votes
 2 extra credit points for each:

 Ashley Craver

 Mingxun Song
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Robot Contest: Tie for 2nd place
 Each received 13.6% of the votes
 4 extra credit points for each:

 Kevin Soloway

 Andrew Yeh

5



Robot Contest: 1st Place
 45% of the votes for Yichen Zhang’s “helicopter robot”
 5 extra credit points
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Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

7



Modeling
 Creating 3D objects
 How to construct complex surfaces?
 Goal
 Specify objects with control points
 Objects should be visually pleasing (smooth)

 Start with curves, then surfaces

What can curves be used for?
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Curves
 Surface of revolution
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Curves
 Extruded/swept surfaces
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Curves
 Animation
 Provide a “track” for objects
 Use as camera path
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Video
 Bezier Curves
 http://www.youtube.com/watch?v=hlDYJNEiYvU
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http://www.youtube.com/watch?v=hlDYJNEiYvU


Curves
 Can be generalized to surface patches
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Curve Representation
Why not specify many points along a curve and connect with lines:
 Can’t get smooth results when magnified – more points needed
 Large storage and CPU requirements

Instead: specify a curve with a small number of “control points”
 Known as a spline curve or spline.

Control 
point
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Spline: Definition
 Wikipedia:
 Term comes from flexible spline 

devices used by shipbuilders and 
draftsmen to draw smooth shapes.

 Spline consists of a long strip fixed 
in position at a number of points 
that relaxes to form a smooth curve 
passing through those points.
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http://upload.wikimedia.org/wikipedia/commons/f/fd/Spline_(PSF).png


Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves
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Interpolating Control Points
 “Interpolating” means that curve goes through all control 

points
 A.k.a. “Anchor Points”
 Seems most intuitive
 But hard to control exact behavior

17



Approximating Control Points
 Curve is “influenced” by control points

 Various types
 Most common: polynomial functions
 Bézier spline (our focus)
 B-spline (generalization of Bézier spline)
 NURBS (Non Uniform Rational Basis Spline): used in CAD tools
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 A vector valued function of one variable x(t)
 Given t, compute a 3D point x=(x,y,z)
 Could be interpreted as three functions: x(t), y(t), z(t)
 Parameter t “moves a point along the curve”

Mathematical Definition

x

y

z

x(0.0) x(0.5) x(1.0)

x(t)
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Tangent Vector

 Derivative
 Vector x’:
 Points in direction of movement
 Length corresponds to speed

x’(0.0) x’(0.5) x’(1.0)

x(t)

x

y

z
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Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves
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Polynomial Functions

 Linear:
(1st order)

 Quadratic:
(2nd order)

 Cubic:
(3rd order)
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Polynomial Curves in 3D
 Linear

 Evaluated as:
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Polynomial Curves in 3D
 Quadratic:

(2nd order)

 Cubic:
(3rd order)

 We usually define the curve for 0 ≤ t ≤ 1
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Control Points
 Polynomial coefficients a, b, c, d can be interpreted as 

control points
 Remember: a, b, c, d have x,y,z components each

 But: they do not intuitively describe the shape of the curve
 Goal: intuitive control points

25



Weighted Average
 Based on linear interpolation (LERP)
 Weighted average between two values
 “Value” could be a number, vector, color, …

 Interpolate between points p0 and p1 with parameter t
 Defines a “curve” that is straight (first-order spline)

p0

p1

t=1
.

. 0<t<1
t=0

x(t) = Lerp t, p0 , p1( )= 1− t( )p0 + t  p1
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 Curve is based at point p0
 Add the vector, scaled by t

.



x(t) = (p1 − p0 )
vector
 

 t +    p0    
point


p0.

Linear Polynomial

p1-p0

.5(p1-p0)

.
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 Geometry matrix

 Geometric basis

 Polynomial basis

 In components

Matrix Form
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Summary

1. Grouped by points p: weighted average

2. Grouped by t: linear polynomial

3. Matrix form:
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Tangent

 Weighted average

 Polynomial

 Matrix form
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Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

31



Bézier Curves
 Invented by Pierre Bézier in the 1960s for designing 

curves for the bodywork of Renault cars
 Are a higher order extension of linear interpolation
 Give intuitive control over curve with control points
 Endpoints are interpolated, intermediate points are 

approximated

p0

p1

p0

p1
p2

p0

p1

p2

p3

Linear Quadratic Cubic
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Cubic Bézier Curve
 Most commonly used case
 Defined by four control points:
 Two interpolated endpoints (points are on the curve)
 Two points control the tangents at the endpoints

 Points x on curve defined as function of parameter t

33

p0

p1

p2

p3

x(t)
•



Demo
 http://blogs.sitepointstatic.com/examples/tech/canvas-

curves/bezier-curve.html

34

http://blogs.sitepointstatic.com/examples/tech/canvas-curves/bezier-curve.html


Algorithmic Construction
 Algorithmic construction

 De Casteljau algorithm, developed at Citroen in 1959, 
named after its inventor Paul de Casteljau (pronounced 
“Cast-all-’Joe”)

 Developed independently from Bézier’s work:
Bézier created the formulation using blending functions, 
Casteljau devised the recursive interpolation algorithm
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De Casteljau Algorithm
 A recursive series of linear interpolations
 Works for any order Bezier function, not only cubic

 Not very efficient to evaluate
 Other forms more commonly used

 But:
 Gives intuition about the geometry
 Useful for subdivision
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De Casteljau Algorithm

p0

p1

p2

p3

 Given:
 Four control points
 A value of t (here t≈0.25)
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De Casteljau Algorithm

p0

q0

p1

p2

p3

q2

q1

q0 (t) = Lerp t,p0 ,p1( )
q1(t) = Lerp t,p1,p2( )
q2 (t) = Lerp t,p2 ,p3( )
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De Casteljau Algorithm

q0

q2

q1

r1

r0

r0 (t) = Lerp t,q0 (t),q1(t)( )
r1(t) = Lerp t,q1(t),q2 (t)( )
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De Casteljau Algorithm

r1x

r0 •

x(t) = Lerp t,r0 (t),r1(t)( )
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x
•

p0

p1

p2

p3

De Casteljau Algorithm

Demo
 https://www.jasondavies.com/animated-bezier/
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https://www.jasondavies.com/animated-bezier/


x = Lerp t,r0 ,r1( )
r0 = Lerp t,q0 ,q1( )
r1 = Lerp t,q1,q2( )

q0 = Lerp t,p0 ,p1( )
q1 = Lerp t,p1,p2( )
q2 = Lerp t,p2 ,p3( )

p0

p1

p2

p3
        p1

q0

r0 p2

x q1

r1 p3

q2

p4

Recursive Linear Interpolation
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Expand the LERPs
q0 (t) = Lerp t,p0 ,p1( )= 1− t( )p0 + tp1

q1(t) = Lerp t,p1,p2( )= 1− t( )p1 + tp2

q2 (t) = Lerp t,p2 ,p3( )= 1− t( )p2 + tp3

r0 (t) = Lerp t,q0 (t),q1(t)( )= 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )
r1(t) = Lerp t,q1(t),q2 (t)( )= 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )

x(t) = Lerp t,r0 (t),r1(t)( )
= 1− t( ) 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )( )
       +t 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )( )

43





x(t) = 1− t( ) 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )( )
+t 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )( )

x(t) = 1− t( )3 p0 + 3 1− t( )2 tp1 + 3 1− t( )t 2p2 + t 3p3

x(t) = −t 3 + 3t 2 − 3t +1( )
B0 (t )  

p0 + 3t 3 − 6t 2 + 3t( )
B1 (t )  

p1

+ −3t 3 + 3t 2( )
B2 (t )

  
p2 + t 3( )

B3 (t )


p3

Weighted Average of Control Points
 Regroup for p:
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 Weights Bi(t) add up to 1 for any value of t

                    x(t) = B0 t( )p0 + B1 t( )p1 + B2 t( )p2 + B3 t( )p3

The cubic Bernstein polynomials :
                    B0 t( )= −t 3 + 3t 2 − 3t +1

                    B1 t( )= 3t 3 − 6t 2 + 3t

                    B2 t( )= −3t 3 + 3t 2

                    B3 t( )= t 3                        

                Bi (t) = 1∑

Cubic Bernstein Polynomials
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General Bernstein Polynomials
B0

1 t( )= −t +1      B0
2 t( )= t 2 − 2t +1     B0

3 t( )= −t 3 + 3t 2 − 3t +1
B1

1 t( )= t B1
2 t( )= −2t 2 + 2t B1

3 t( )= 3t 3 − 6t 2 + 3t
B2

2 t( )= t 2 B2
3 t( )= −3t 3 + 3t 2

B3
3 t( )= t 3

Bi
n t( )=

n
i






1− t( )n− i t( )i
n
i





=

n!
i! n − i( )!

Bi
n t( )∑ = 1 n! = factorial of n

(n+1)! = n! x (n+1)
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Any order Bézier Curves
 nth-order Bernstein polynomials form nth-order 

Bézier curves

Bi
n t( )=

n
i






1− t( )n− i t( )i

x t( )= Bi
n t( )pi

i=0

n

∑
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Demo: Bezier curves of multiple orders
 http://www.ibiblio.org/e-notes/Splines/bezier.html
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http://www.ibiblio.org/e-notes/Splines/bezier.html


Useful Bézier Curve Properties

 Convex Hull property
 Affine Invariance
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p0

p1

p2

p3

Convex Hull Property
 A Bézier curve is always inside the convex hull
 Makes curve predictable
 Allows culling, intersection testing, adaptive tessellation
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Affine Invariance
Transforming Bézier curves
 Two ways to transform:
 First transform control points, then compute spline points
 First compute spline points, then transform them

 Results are identical
 Invariant under affine transformations
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 Good for fast evaluation
 Precompute constant coefficients (a,b,c,d) 

 Not much geometric intuition

Start with Bernstein form:

       x(t) = −t 3 + 3t 2 − 3t +1( )p0 + 3t 3 − 6t 2 + 3t( )p1 + −3t 3 + 3t 2( )p2 + t 3( )p3

Regroup into coefficients of t :
x(t) = −p0 + 3p1 − 3p2 + p3( )t 3 + 3p0 − 6p1 + 3p2( )t 2 + −3p0 + 3p1( )t + p0( )1

x(t) = at 3 + bt 2 + ct + d

a = −p0 + 3p1 − 3p2 + p3( )
b = 3p0 − 6p1 + 3p2( )
c = −3p0 + 3p1( )
d = p0( )

Cubic Polynomial Form
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x(t) = a

b c d 

t 3

t 2

t
1



















a = −p0 + 3p1 − 3p2 + p3( )

b = 3p0 − 6p1 + 3p2( )
c = −3p0 + 3p1( )
d = p0( )

x(t) = p0 p1 p2 p3[ ]

GBez

  

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



















BBez

  

t 3

t 2

t
1



















T


Cubic Matrix Form
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𝑥𝑥 𝑡𝑡 = 𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑇𝑇 = 𝐶𝐶 𝑇𝑇



 Other types of cubic splines use different basis matrices
 Efficient evaluation
 Pre-compute C
 Use existing 4x4 matrix hardware support

Matrix Form
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Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves
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Drawing Bézier Curves
 Draw line segments or individual pixels
 Approximate the curve as a series of line segments 

(tessellation)
 Uniform sampling
 Adaptive sampling
 Recursive subdivision
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Uniform Sampling
 Approximate curve with N straight segments
 N chosen in advance
 Evaluate

 Connect points with lines

 Too few points?
 Poor approximation:  “curve” is faceted

 Too many points?
 Slow to draw too many line segments



xi = x ti( ) where ti =
i
N

 for i = 0, 1,, N

xi =
a i3

N 3 +

b i2

N 2 +
c i

N
+ d

x4

x0

x1

x2

x3

x(t)
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Adaptive Sampling
 Use only as many line segments as you need
 Fewer segments where curve is mostly flat
 More segments where curve bends
 Segments never smaller than a pixel

x(t)
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Recursive Subdivision
 Any cubic curve segment can be expressed as a 

Bézier curve
 Any piece of a cubic curve is itself a cubic curve
 Therefore:
 Any Bézier curve can be broken down into smaller Bézier

curves
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 De Casteljau construction points
are the control points of two Bézier
sub-segments

De Casteljau Subdivision

xp0

p1

p2

p3

q0
r0

r1

q2
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Adaptive Subdivision Algorithm
 Use De Casteljau construction to split Bézier segment in 

two
 For each part
 If “flat enough”: draw line segment
 Else: continue recursion

 Curve is flat enough if hull is flat enough
 Test how far the approximating control points are from a straight 

segment
 If less than one pixel, the hull is flat enough
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Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Longer curves
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More Control Points
 Cubic Bézier curve limited to 4 control points
 Cubic curve can only have one inflection (point where curve changes 

direction of bending)
 Need more control points for more complex curves

 k-1 order Bézier curve with k control points

 Hard to control and hard to work with
 Intermediate points don’t have obvious effect on shape
 Changing any control point changes the whole curve
 Want local support: each control point only influences nearby portion of 

curve
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Piecewise Curves
 Sequence of line segments
 Piecewise linear curve

 Sequence of cubic curve segments
 Piecewise cubic curve (here piecewise Bézier)
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Global Parameterization
 Given N curve segments x0(t), x1(t), …, xN-1(t)
 Each is parameterized for t from 0 to 1
 Define a piecewise curve
 Global parameter u from 0 to N

 Alternate solution: u defined from 0 to 1


x(u) =

x0 (u), 0 ≤ u ≤ 1
x1(u −1), 1 ≤ u ≤ 2
 

xN −1(u − N −1( )),    N −1 ≤ u ≤ N











x(u) = xi (u − i),  where i = u     (and x(N ) = xN −1(1))

x(u) = xi (Nu − i),  where i = Nu 
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Piecewise Bézier curve



• Given 3N +1 points p0 ,p1,,p3N

• Define N Bézier segments:
x0 (t) = B0 (t)p0 + B1(t)p1 + B2 (t)p2 + B3(t)p3

x1(t) = B0 (t)p3 + B1(t)p4 + B2 (t)p5 + B3(t)p6



           xN −1(t) = B0 (t)p3N −3 + B1(t)p3N −2 + B2 (t)p3N −1 + B3(t)p3N

x0(t)

x1(t)

x2(t)

x3(t)

p0

p1
p2

p3

p4
p5

p6

p7 p8

p9

p10 p11

p12
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Piecewise Bézier Curve



           x(u) =

x0 ( 1
3 u), 0 ≤ u ≤ 3

x1( 1
3 u −1), 3 ≤ u ≤ 6

 

xN −1( 1
3 u − (N −1)), 3N − 3 ≤ u ≤ 3N











           x(u) = xi
1
3 u − i( ), where i = 1

3 u 

 Parameter in 0<=u<=3N

x0(t) x1(t)

x2(t) x3(t)

x(3.5)

x(8.75)

u=0
u=12

67



Parametric Continuity
 C0 continuity:

 Curve segments are connected 
 C1 continuity:

 C0 & 1st-order derivatives agree
 Curves have same tangents
 Relevant for smooth shading

 C2 continuity:
 C1 & 2nd-order derivatives agree
 Curves have same tangents and curvature
 Relevant for high quality reflections



 3N+1 points define N Bézier segments
 x(3i)=p3i
 C0 continuous by construction 
 C1 continuous at p3i when p3i - p3i-1 = p3i+1 - p3i
 C2 is harder to achieve and rarely necessary

Piecewise Bézier Curve

p0

p1

p2

P3
p6

p5

p4

C1 continuous

p0

P3

p2

p1

p4

p5

p6

C1 discontinuous
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Piecewise Bézier Curves
 Used often in 2D drawing programs
 Inconveniences
 Must have 4 or 7 or 10 or 13 or … (1 plus a multiple of 3) 

control points
 Some points interpolate, others approximate
 Need to impose constraints on control points to obtain C1 

continuity
 Solutions
 User interface using “Bézier handles” to ascertain C1 continuity
 Generalization to B-splines or NURBS
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Bézier Handles

 Segment end points 
(interpolating) 
presented as curve 
control points

 Midpoints 
(approximating 
points) presented as 
“handles”

 Can have option to 
enforce C1 continuity

Adobe Illustrator
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Demo: Bezier handles
 http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.ht

ml
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http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html


Rational Curves
 Weight causes point to “pull” more (or less)
 Can model circles with proper points and weights,
 Below: rational quadratic Bézier curve (three control points)

pull less
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B-Splines
 B as in Basis-Splines
 Basis is blending function
 Difference to Bézier blending function:
 B-spline blending function can be zero outside a particular 

range (limits scope over which a control point has influence)

 B-Spline is defined by control points and range in which 
each control point is active.
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NURBS
 Non Uniform Rational B-Splines
 Generalization of Bézier curves
 Non uniform: 
 Combine B-Splines (limited scope of control points) and 

Rational Curves (weighted control points)
 Can exactly model conic sections (circles, ellipses)
 OpenGL support:  see gluNurbsCurve

 Demos:
 http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d/index.

html
 http://geometrie.foretnik.net/files/NURBS-en.swf
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http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d/index.html
http://geometrie.foretnik.net/files/NURBS-en.swf
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