
CSE 167:
Introduction to Computer Graphics
Lecture #11: Bezier Curves

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2019

Announcements
 Project 3 late grading tomorrow, Friday at 2pm
 In CSE basement labs
 Sign up on autograder.ucsd.edu
 Grading ends at 3:15pm

 Midterms likely to be returned next Tuesday
 No discussion next Monday (Veterans Day)
 Will go over project 3 in class today and/or on Tuesday

2

Project 3 Robot Contest

 Voting has closed

 The winners have been determined!

3

Robot Contest: Tie for 4th place
 Each received 9.1% of the votes
 2 extra credit points for each:

 Ashley Craver

 Mingxun Song

4

Robot Contest: Tie for 2nd place
 Each received 13.6% of the votes
 4 extra credit points for each:

 Kevin Soloway

 Andrew Yeh

5

Robot Contest: 1st Place
 45% of the votes for Yichen Zhang’s “helicopter robot”
 5 extra credit points

6

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

7

Modeling
 Creating 3D objects
 How to construct complex surfaces?
 Goal
 Specify objects with control points
 Objects should be visually pleasing (smooth)

 Start with curves, then surfaces

What can curves be used for?

8

Curves
 Surface of revolution

9

Curves
 Extruded/swept surfaces

10

Curves
 Animation
 Provide a “track” for objects
 Use as camera path

11

Video
 Bezier Curves
 http://www.youtube.com/watch?v=hlDYJNEiYvU

12

http://www.youtube.com/watch?v=hlDYJNEiYvU

Curves
 Can be generalized to surface patches

13

Curve Representation
Why not specify many points along a curve and connect with lines:
 Can’t get smooth results when magnified – more points needed
 Large storage and CPU requirements

Instead: specify a curve with a small number of “control points”
 Known as a spline curve or spline.

Control
point

14

Spline: Definition
 Wikipedia:
 Term comes from flexible spline

devices used by shipbuilders and
draftsmen to draw smooth shapes.

 Spline consists of a long strip fixed
in position at a number of points
that relaxes to form a smooth curve
passing through those points.

15

http://upload.wikimedia.org/wikipedia/commons/f/fd/Spline_(PSF).png

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

16

Interpolating Control Points
 “Interpolating” means that curve goes through all control

points
 A.k.a. “Anchor Points”
 Seems most intuitive
 But hard to control exact behavior

17

Approximating Control Points
 Curve is “influenced” by control points

 Various types
 Most common: polynomial functions
 Bézier spline (our focus)
 B-spline (generalization of Bézier spline)
 NURBS (Non Uniform Rational Basis Spline): used in CAD tools

18

 A vector valued function of one variable x(t)
 Given t, compute a 3D point x=(x,y,z)
 Could be interpreted as three functions: x(t), y(t), z(t)
 Parameter t “moves a point along the curve”

Mathematical Definition

x

y

z

x(0.0) x(0.5) x(1.0)

x(t)

19

Tangent Vector

 Derivative
 Vector x’:
 Points in direction of movement
 Length corresponds to speed

x’(0.0) x’(0.5) x’(1.0)

x(t)

x

y

z

20

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

21

Polynomial Functions

 Linear:
(1st order)

 Quadratic:
(2nd order)

 Cubic:
(3rd order)

22

Polynomial Curves in 3D
 Linear

 Evaluated as:

23

Polynomial Curves in 3D
 Quadratic:

(2nd order)

 Cubic:
(3rd order)

 We usually define the curve for 0 ≤ t ≤ 1

24

Control Points
 Polynomial coefficients a, b, c, d can be interpreted as

control points
 Remember: a, b, c, d have x,y,z components each

 But: they do not intuitively describe the shape of the curve
 Goal: intuitive control points

25

Weighted Average
 Based on linear interpolation (LERP)
 Weighted average between two values
 “Value” could be a number, vector, color, …

 Interpolate between points p0 and p1 with parameter t
 Defines a “curve” that is straight (first-order spline)

p0

p1

t=1
.

. 0<t<1
t=0

x(t) = Lerp t, p0 , p1()= 1− t()p0 + t p1

26

 Curve is based at point p0
 Add the vector, scaled by t

.

x(t) = (p1 − p0)
vector

 t + p0
point

p0.

Linear Polynomial

p1-p0

.5(p1-p0)

.

27

 Geometry matrix

 Geometric basis

 Polynomial basis

 In components

Matrix Form

28

Summary

1. Grouped by points p: weighted average

2. Grouped by t: linear polynomial

3. Matrix form:

29

Tangent

 Weighted average

 Polynomial

 Matrix form

30

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

31

Bézier Curves
 Invented by Pierre Bézier in the 1960s for designing

curves for the bodywork of Renault cars
 Are a higher order extension of linear interpolation
 Give intuitive control over curve with control points
 Endpoints are interpolated, intermediate points are

approximated

p0

p1

p0

p1
p2

p0

p1

p2

p3

Linear Quadratic Cubic

32

Cubic Bézier Curve
 Most commonly used case
 Defined by four control points:
 Two interpolated endpoints (points are on the curve)
 Two points control the tangents at the endpoints

 Points x on curve defined as function of parameter t

33

p0

p1

p2

p3

x(t)
•

Demo
 http://blogs.sitepointstatic.com/examples/tech/canvas-

curves/bezier-curve.html

34

http://blogs.sitepointstatic.com/examples/tech/canvas-curves/bezier-curve.html

Algorithmic Construction
 Algorithmic construction

 De Casteljau algorithm, developed at Citroen in 1959,
named after its inventor Paul de Casteljau (pronounced
“Cast-all-’Joe”)

 Developed independently from Bézier’s work:
Bézier created the formulation using blending functions,
Casteljau devised the recursive interpolation algorithm

35

De Casteljau Algorithm
 A recursive series of linear interpolations
 Works for any order Bezier function, not only cubic

 Not very efficient to evaluate
 Other forms more commonly used

 But:
 Gives intuition about the geometry
 Useful for subdivision

36

De Casteljau Algorithm

p0

p1

p2

p3

 Given:
 Four control points
 A value of t (here t≈0.25)

37

De Casteljau Algorithm

p0

q0

p1

p2

p3

q2

q1

q0 (t) = Lerp t,p0 ,p1()
q1(t) = Lerp t,p1,p2()
q2 (t) = Lerp t,p2 ,p3()

38

De Casteljau Algorithm

q0

q2

q1

r1

r0

r0 (t) = Lerp t,q0 (t),q1(t)()
r1(t) = Lerp t,q1(t),q2 (t)()

39

De Casteljau Algorithm

r1x

r0 •

x(t) = Lerp t,r0 (t),r1(t)()

40

x
•

p0

p1

p2

p3

De Casteljau Algorithm

Demo
 https://www.jasondavies.com/animated-bezier/

41

https://www.jasondavies.com/animated-bezier/

x = Lerp t,r0 ,r1()
r0 = Lerp t,q0 ,q1()
r1 = Lerp t,q1,q2()

q0 = Lerp t,p0 ,p1()
q1 = Lerp t,p1,p2()
q2 = Lerp t,p2 ,p3()

p0

p1

p2

p3
 p1

q0

r0 p2

x q1

r1 p3

q2

p4

Recursive Linear Interpolation

42

Expand the LERPs
q0 (t) = Lerp t,p0 ,p1()= 1− t()p0 + tp1

q1(t) = Lerp t,p1,p2()= 1− t()p1 + tp2

q2 (t) = Lerp t,p2 ,p3()= 1− t()p2 + tp3

r0 (t) = Lerp t,q0 (t),q1(t)()= 1− t() 1− t()p0 + tp1()+ t 1− t()p1 + tp2()
r1(t) = Lerp t,q1(t),q2 (t)()= 1− t() 1− t()p1 + tp2()+ t 1− t()p2 + tp3()

x(t) = Lerp t,r0 (t),r1(t)()
= 1− t() 1− t() 1− t()p0 + tp1()+ t 1− t()p1 + tp2()()
 +t 1− t() 1− t()p1 + tp2()+ t 1− t()p2 + tp3()()

43

x(t) = 1− t() 1− t() 1− t()p0 + tp1()+ t 1− t()p1 + tp2()()
+t 1− t() 1− t()p1 + tp2()+ t 1− t()p2 + tp3()()

x(t) = 1− t()3 p0 + 3 1− t()2 tp1 + 3 1− t()t 2p2 + t 3p3

x(t) = −t 3 + 3t 2 − 3t +1()
B0 (t)

p0 + 3t 3 − 6t 2 + 3t()
B1 (t)

p1

+ −3t 3 + 3t 2()
B2 (t)

p2 + t 3()

B3 (t)

p3

Weighted Average of Control Points
 Regroup for p:

44

 Weights Bi(t) add up to 1 for any value of t

 x(t) = B0 t()p0 + B1 t()p1 + B2 t()p2 + B3 t()p3

The cubic Bernstein polynomials :
 B0 t()= −t 3 + 3t 2 − 3t +1

 B1 t()= 3t 3 − 6t 2 + 3t

 B2 t()= −3t 3 + 3t 2

 B3 t()= t 3

 Bi (t) = 1∑

Cubic Bernstein Polynomials

45

General Bernstein Polynomials
B0

1 t()= −t +1 B0
2 t()= t 2 − 2t +1 B0

3 t()= −t 3 + 3t 2 − 3t +1
B1

1 t()= t B1
2 t()= −2t 2 + 2t B1

3 t()= 3t 3 − 6t 2 + 3t
B2

2 t()= t 2 B2
3 t()= −3t 3 + 3t 2

B3
3 t()= t 3

Bi
n t()=

n
i

1− t()n− i t()i
n
i

=

n!
i! n − i()!

Bi
n t()∑ = 1 n! = factorial of n

(n+1)! = n! x (n+1)
46

Any order Bézier Curves
 nth-order Bernstein polynomials form nth-order

Bézier curves

Bi
n t()=

n
i

1− t()n− i t()i

x t()= Bi
n t()pi

i=0

n

∑

47

Demo: Bezier curves of multiple orders
 http://www.ibiblio.org/e-notes/Splines/bezier.html

48

http://www.ibiblio.org/e-notes/Splines/bezier.html

Useful Bézier Curve Properties

 Convex Hull property
 Affine Invariance

49

p0

p1

p2

p3

Convex Hull Property
 A Bézier curve is always inside the convex hull
 Makes curve predictable
 Allows culling, intersection testing, adaptive tessellation

50

Affine Invariance
Transforming Bézier curves
 Two ways to transform:
 First transform control points, then compute spline points
 First compute spline points, then transform them

 Results are identical
 Invariant under affine transformations

51

 Good for fast evaluation
 Precompute constant coefficients (a,b,c,d)

 Not much geometric intuition

Start with Bernstein form:

 x(t) = −t 3 + 3t 2 − 3t +1()p0 + 3t 3 − 6t 2 + 3t()p1 + −3t 3 + 3t 2()p2 + t 3()p3

Regroup into coefficients of t :
x(t) = −p0 + 3p1 − 3p2 + p3()t 3 + 3p0 − 6p1 + 3p2()t 2 + −3p0 + 3p1()t + p0()1

x(t) = at 3 + bt 2 + ct + d

a = −p0 + 3p1 − 3p2 + p3()
b = 3p0 − 6p1 + 3p2()
c = −3p0 + 3p1()
d = p0()

Cubic Polynomial Form

52

x(t) = a

b c d

t 3

t 2

t
1

a = −p0 + 3p1 − 3p2 + p3()

b = 3p0 − 6p1 + 3p2()
c = −3p0 + 3p1()
d = p0()

x(t) = p0 p1 p2 p3[]

GBez

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

BBez

t 3

t 2

t
1

T

Cubic Matrix Form

53

𝑥𝑥 𝑡𝑡 = 𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑇𝑇 = 𝐶𝐶 𝑇𝑇

 Other types of cubic splines use different basis matrices
 Efficient evaluation
 Pre-compute C
 Use existing 4x4 matrix hardware support

Matrix Form

54

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves

55

Drawing Bézier Curves
 Draw line segments or individual pixels
 Approximate the curve as a series of line segments

(tessellation)
 Uniform sampling
 Adaptive sampling
 Recursive subdivision

56

Uniform Sampling
 Approximate curve with N straight segments
 N chosen in advance
 Evaluate

 Connect points with lines

 Too few points?
 Poor approximation: “curve” is faceted

 Too many points?
 Slow to draw too many line segments

xi = x ti() where ti =
i
N

 for i = 0, 1,, N

xi =
a i3

N 3 +

b i2

N 2 +
c i

N
+ d

x4

x0

x1

x2

x3

x(t)

57

Adaptive Sampling
 Use only as many line segments as you need
 Fewer segments where curve is mostly flat
 More segments where curve bends
 Segments never smaller than a pixel

x(t)

58

Recursive Subdivision
 Any cubic curve segment can be expressed as a

Bézier curve
 Any piece of a cubic curve is itself a cubic curve
 Therefore:
 Any Bézier curve can be broken down into smaller Bézier

curves

59

 De Casteljau construction points
are the control points of two Bézier
sub-segments

De Casteljau Subdivision

xp0

p1

p2

p3

q0
r0

r1

q2

60

Adaptive Subdivision Algorithm
 Use De Casteljau construction to split Bézier segment in

two
 For each part
 If “flat enough”: draw line segment
 Else: continue recursion

 Curve is flat enough if hull is flat enough
 Test how far the approximating control points are from a straight

segment
 If less than one pixel, the hull is flat enough

61

Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Longer curves

62

More Control Points
 Cubic Bézier curve limited to 4 control points
 Cubic curve can only have one inflection (point where curve changes

direction of bending)
 Need more control points for more complex curves

 k-1 order Bézier curve with k control points

 Hard to control and hard to work with
 Intermediate points don’t have obvious effect on shape
 Changing any control point changes the whole curve
 Want local support: each control point only influences nearby portion of

curve

63

Piecewise Curves
 Sequence of line segments
 Piecewise linear curve

 Sequence of cubic curve segments
 Piecewise cubic curve (here piecewise Bézier)

64

Global Parameterization
 Given N curve segments x0(t), x1(t), …, xN-1(t)
 Each is parameterized for t from 0 to 1
 Define a piecewise curve
 Global parameter u from 0 to N

 Alternate solution: u defined from 0 to 1

x(u) =

x0 (u), 0 ≤ u ≤ 1
x1(u −1), 1 ≤ u ≤ 2

xN −1(u − N −1()), N −1 ≤ u ≤ N

x(u) = xi (u − i), where i = u (and x(N) = xN −1(1))

x(u) = xi (Nu − i), where i = Nu

65

Piecewise Bézier curve

• Given 3N +1 points p0 ,p1,,p3N

• Define N Bézier segments:
x0 (t) = B0 (t)p0 + B1(t)p1 + B2 (t)p2 + B3(t)p3

x1(t) = B0 (t)p3 + B1(t)p4 + B2 (t)p5 + B3(t)p6

 xN −1(t) = B0 (t)p3N −3 + B1(t)p3N −2 + B2 (t)p3N −1 + B3(t)p3N

x0(t)

x1(t)

x2(t)

x3(t)

p0

p1
p2

p3

p4
p5

p6

p7 p8

p9

p10 p11

p12

66

Piecewise Bézier Curve

 x(u) =

x0 (1
3 u), 0 ≤ u ≤ 3

x1(1
3 u −1), 3 ≤ u ≤ 6

xN −1(1
3 u − (N −1)), 3N − 3 ≤ u ≤ 3N

 x(u) = xi
1
3 u − i(), where i = 1

3 u

 Parameter in 0<=u<=3N

x0(t) x1(t)

x2(t) x3(t)

x(3.5)

x(8.75)

u=0
u=12

67

Parametric Continuity
 C0 continuity:

 Curve segments are connected
 C1 continuity:

 C0 & 1st-order derivatives agree
 Curves have same tangents
 Relevant for smooth shading

 C2 continuity:
 C1 & 2nd-order derivatives agree
 Curves have same tangents and curvature
 Relevant for high quality reflections

 3N+1 points define N Bézier segments
 x(3i)=p3i
 C0 continuous by construction
 C1 continuous at p3i when p3i - p3i-1 = p3i+1 - p3i
 C2 is harder to achieve and rarely necessary

Piecewise Bézier Curve

p0

p1

p2

P3
p6

p5

p4

C1 continuous

p0

P3

p2

p1

p4

p5

p6

C1 discontinuous
69

Piecewise Bézier Curves
 Used often in 2D drawing programs
 Inconveniences
 Must have 4 or 7 or 10 or 13 or … (1 plus a multiple of 3)

control points
 Some points interpolate, others approximate
 Need to impose constraints on control points to obtain C1

continuity
 Solutions
 User interface using “Bézier handles” to ascertain C1 continuity
 Generalization to B-splines or NURBS

70

Bézier Handles

 Segment end points
(interpolating)
presented as curve
control points

 Midpoints
(approximating
points) presented as
“handles”

 Can have option to
enforce C1 continuity

Adobe Illustrator

71

Demo: Bezier handles
 http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.ht

ml

72

http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html

Rational Curves
 Weight causes point to “pull” more (or less)
 Can model circles with proper points and weights,
 Below: rational quadratic Bézier curve (three control points)

pull less

73

B-Splines
 B as in Basis-Splines
 Basis is blending function
 Difference to Bézier blending function:
 B-spline blending function can be zero outside a particular

range (limits scope over which a control point has influence)

 B-Spline is defined by control points and range in which
each control point is active.

74

NURBS
 Non Uniform Rational B-Splines
 Generalization of Bézier curves
 Non uniform:
 Combine B-Splines (limited scope of control points) and

Rational Curves (weighted control points)
 Can exactly model conic sections (circles, ellipses)
 OpenGL support: see gluNurbsCurve

 Demos:
 http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d/index.

html
 http://geometrie.foretnik.net/files/NURBS-en.swf

75

http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d/index.html
http://geometrie.foretnik.net/files/NURBS-en.swf

	CSE 167:�Introduction to Computer Graphics�Lecture #11: Bezier Curves
	Announcements
	Project 3 Robot Contest
	Robot Contest: Tie for 4th place
	Robot Contest: Tie for 2nd place
	Robot Contest: 1st Place
	Lecture Overview
	Modeling
	Curves
	Curves
	Curves
	Video
	Curves
	Curve Representation
	Spline: Definition
	Lecture Overview
	Interpolating Control Points
	Approximating Control Points
	Mathematical Definition
	Tangent Vector
	Lecture Overview
	Polynomial Functions
	Polynomial Curves in 3D
	Polynomial Curves in 3D
	Control Points
	Weighted Average
	Linear Polynomial
	Matrix Form
	Summary
	Tangent
	Lecture Overview
	Bézier Curves
	Cubic Bézier Curve
	Demo
	Algorithmic Construction
	De Casteljau Algorithm
	De Casteljau Algorithm
	De Casteljau Algorithm
	De Casteljau Algorithm
	De Casteljau Algorithm
	De Casteljau Algorithm
	Recursive Linear Interpolation
	Expand the LERPs
	Weighted Average of Control Points
	Cubic Bernstein Polynomials
	General Bernstein Polynomials
	Any order Bézier Curves
	Demo: Bezier curves of multiple orders
	Useful Bézier Curve Properties
	Convex Hull Property
	Affine Invariance
	Cubic Polynomial Form
	Cubic Matrix Form
	Matrix Form
	Lecture Overview
	Drawing Bézier Curves
	Uniform Sampling
	Adaptive Sampling
	Recursive Subdivision
	De Casteljau Subdivision
	Adaptive Subdivision Algorithm
	Lecture Overview
	More Control Points
	Piecewise Curves
	Global Parameterization
	Piecewise Bézier curve
	Piecewise Bézier Curve
	Parametric Continuity
	Piecewise Bézier Curve
	Piecewise Bézier Curves
	Bézier Handles
	Demo: Bezier handles
	Rational Curves
	B-Splines
	NURBS

