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Announcements
 Tomorrow: Discussion at 3pm in Center Hall 109

 Next Friday: homework 2 due at 2pm
 Upload to TritonEd
 Demonstrate in CSE basement labs
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Today

 Finish up linear algebra foundations
 Coordinate system transformations
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Rotation in 2D

 Convention: positive angle rotates counterclockwise
 Rotation matrix
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Rotation in 3D

Rotation around coordinate axes
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Rotation in 3D

 Concatenation of rotations around x, y, z axes

 are called Euler angles
 Result depends on matrix order!
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Rotation about an Arbitrary Axis

 Complicated!
 Rotate point [x,y,z] about axis [u,v,w] by angle θ:
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Concatenating transformations

 Given a sequence of transformations M3M2M1

 Note: associativity applies

 Efficient inversion (when the components are “simple”)
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How to rotate around a Pivot Point?

Rotation around 
origin:
p’ = R p

Rotation around 
pivot point:
p’ = ?
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Rotating point p around a pivot point

1. Translation T 2. Rotation R 3. Translation T-1
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p’ = T-1 R T p



Today

 Vectors and matrices
 Affine transformations
 Homogeneous coordinates
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Translation

 Translation in 2D

 Translation matrix T=?
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Translation

 Translation in 2D: 3x3 matrix

 Analogous in 3D: 4x4 matrix
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Homogeneous Coordinates

 A trick to unify and simplify computations, in 
particular:
 affine transformations (esp. rotation, scaling, translation)
 projective transformations
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Homogeneous Coordinates
 Add an extra component. 1 for a point, 0 for a vector:

 Combine M and d into single 4x4 matrix:

 And see what happens when we multiply…
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Homogeneous Point Transform

 Transform a point:

 Top three rows are the affine transform!
 Bottom row stays 1
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Homogeneous Vector Transform
 Transform a vector:

 Top three rows are the linear transform
 Displacement d is properly ignored

 Bottom row stays 0
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Homogeneous Arithmetic

 Legal operations always end in 0 or 1! 
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Homogeneous Transforms
 Rotation, Scale, and Translation of points and vectors 

unified in a single matrix transformation:

 Matrix has the form:
 Last row always 0,0,0,1

 Transforms can be composed by matrix multiplication
 Same caveat: order of operations is important
 Same note: transforms operate right-to-left
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4x4 Scale Matrix

 Generic form:

 Inverse:
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4x4 Rotation Matrix

 Generic form:

 Inverse = transpose:

 Rotation matrices are orthogonal
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4x4 Translation Matrix

 Generic form:

 Inverse:
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Today

 Coordinate Transformation
 Typical Coordinate Systems
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Coordinate System

 Given point p in homogeneous coordinates:

 Coordinates describe the point’s 3D position in a 
coordinate system with basis vectors x, y, z and origin o: 
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Rectangular and Polar Coordinates
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Coordinate Transformation

New uvwq coordinate system

Goal: Find coordinates of pxyz in new uvwq coordinate system
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Original xyzo coordinate system



Coordinate Transformation

Express coordinates of xyzo reference frame 
with respect to uvwq reference frame:
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Coordinate Transformation

Point p expressed in new uvwq reference frame:
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Coordinate Transformation
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Coordinate Transformation

Inverse transformation
 Given point Puvw w.r.t. reference frame uvwq:

 Coordinates Pxyz w.r.t. reference frame xyzo are calculated as:
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Lecture Overview

 Coordinate Transformation
 Typical Coordinate Systems
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Typical Coordinate Systems

 In computer graphics, we typically use at least three 
coordinate systems:
 World coordinate system
 Camera coordinate system
 Object coordinate system

World coordinates

Object
coordinates

Camera
coordinates



World Coordinates

 Common reference frame for all objects in the scene
 No standard for coordinate system orientation

 If there is a ground plane, usually x/y is horizontal and z points 
up (height)

 Otherwise, x/y is often screen plane, z points out of the screen

World coordinates

Object
coordinates

Camera
coordinates
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Object Coordinates

 Local coordinates in which points and other object 
geometry are given

 Often origin is in geometric center, on the base, or in a 
corner of the object
 Depends on how object is generated or used.

World coordinates

Object
coordinates

Camera
coordinates
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Source: http://motivate.maths.org



Object Transformation
 The transformation from object to world coordinates is 

different for each object.

 Defines placement of object in scene.

 Given by “model matrix” (model-to-world transformation) M.
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Camera Coordinate System

 Origin defines center of projection of camera
 x-y plane is parallel to image plane
 z-axis is perpendicular to image plane

World coordinates

Object
coordinates

Camera
coordinates
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Camera Coordinate System

 The Camera Matrix defines the transformation from 
camera to world coordinates
 Placement of camera in world

World coordinates

Object
coordinates

Camera
coordinates
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Camera Matrix
 Given:

 Center point of projection e
 Look at point d
 Camera up vector u

World coordinates

Camera
coordinates
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Camera Matrix

 Construct xc, yc, zc

World coordinates

Camera
coordinates
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Camera Matrix

 Step 1: z-axis

 Step 2: x-axis

 Step 3: y-axis

 Camera Matrix:
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Transforming Object to Camera Coordinates

 Object to world coordinates: M
 Camera to world coordinates: C
 Point to transform: p
 Resulting transformation equation: p’ = C-1 M p
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Tips for Notation

 Indicate coordinate systems with every point or matrix
 Point: pobject

 Matrix: Mobjectworld

 Resulting transformation equation:
pcamera = (Ccameraworld)-1 Mobjectworld pobject

 In source code use similar names:
 Point: p_object or p_obj or p_o

 Matrix: object2world or obj2wld or o2w

 Resulting transformation equation:
wld2cam = inverse(cam2wld);
p_cam = p_obj * obj2wld * wld2cam;
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Inverse of Camera Matrix

 How to calculate the inverse of camera matrix C-1?
 Generic matrix inversion is complex and compute-

intensive!
 Solution: affine transformation matrices can be inverted 

more easily
 Observation: 

 Camera matrix consists of translation and rotation: T x R

 Inverse of rotation: R-1 = RT

 Inverse of translation: T(t)-1 = T(-t)
 Inverse of camera matrix: C-1 = R-1 xT-1
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Objects in Camera Coordinates

 We have things lined up the way we like them on screen
 x points to the right
 y points up
 -z into the screen (i.e., z points out of the screen)
 Objects to look at are in front of us, i.e., have negative z values

 But objects are still in 3D
 Next step: project scene to 2D plane
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