CSE 167: Introduction to Computer Graphics Lecture #4: Coordinate Systems

> Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2018

Announcements

- Tomorrow: Discussion at 3pm in Center Hall 109
- Next Friday: homework 2 due at 2pm
 - Upload to TritonEd
 - Demonstrate in CSE basement labs

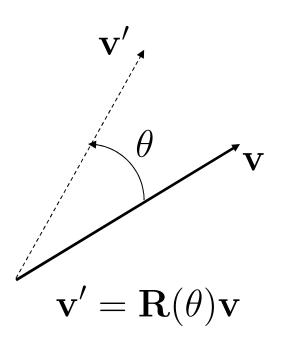
Today

- Finish up linear algebra foundations
- Coordinate system transformations

Rotation in 2D

- Convention: positive angle rotates counterclockwise
- Rotation matrix

$$\mathbf{R}(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$



Rotation in 3D

Rotation around coordinate axes

$$\mathbf{R}_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$
$$\mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$
$$\mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation in 3D

Concatenation of rotations around x, y, z axes

 $\mathbf{R}_{x,y,z}(\theta_x,\theta_y,\theta_z) = \mathbf{R}_x(\theta_x)\mathbf{R}_y(\theta_y)\mathbf{R}_z(\theta_z)$

- ▶ $\theta_x, \theta_y, \theta_z$ are called Euler angles
- Result depends on matrix order!

 $\mathbf{R}_x(\theta_x)\mathbf{R}_y(\theta_y)\mathbf{R}_z(\theta_z) \neq \mathbf{R}_z(\theta_z)\mathbf{R}_y(\theta_y)\mathbf{R}_x(\theta_x)$

Rotation about an Arbitrary Axis

- Complicated!
- Rotate point [x,y,z] about axis [u,v,w] by angle θ:

$$\frac{u(ux+vy+wz)(1-\cos\theta)+(u^2+v^2+w^2)x\cos\theta+\sqrt{u^2+v^2+w^2}(-wy+vz)\sin\theta}{u^2+v^2+w^2}$$

$$\frac{v(ux+vy+wz)(1-\cos\theta)+(u^2+v^2+w^2)y\cos\theta+\sqrt{u^2+v^2+w^2}(wx-uz)\sin\theta}{u^2+v^2+w^2}$$

$$\frac{w(ux+vy+wz)(1-\cos\theta)+(u^2+v^2+w^2)z\cos\theta+\sqrt{u^2+v^2+w^2}(-vx+uy)\sin\theta}{u^2+v^2+w^2}$$

7

Concatenating transformations

• Given a sequence of transformations $M_3M_2M_1$ $\mathbf{p}' = \mathbf{M}_3\mathbf{M}_2\mathbf{M}_1\mathbf{p}$ $\mathbf{M}_{total} = \mathbf{M}_3\mathbf{M}_2\mathbf{M}_1$ $\mathbf{p}' = \mathbf{M}_{total}\mathbf{p}$

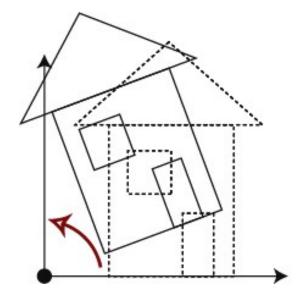
Note: associativity applies

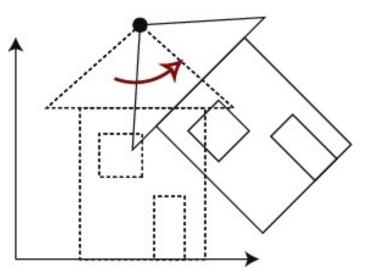
$$\mathbf{M}_{total} = (\mathbf{M}_3 \mathbf{M}_2) \mathbf{M}_1 = \mathbf{M}_3 (\mathbf{M}_2 \mathbf{M}_1)$$

Efficient inversion (when the components are "simple")

$$\mathbf{M}_{total}^{-1} = \mathbf{M}_1^{-1}\mathbf{M}_2^{-1}\mathbf{M}_3^{-1}$$

How to rotate around a Pivot Point?



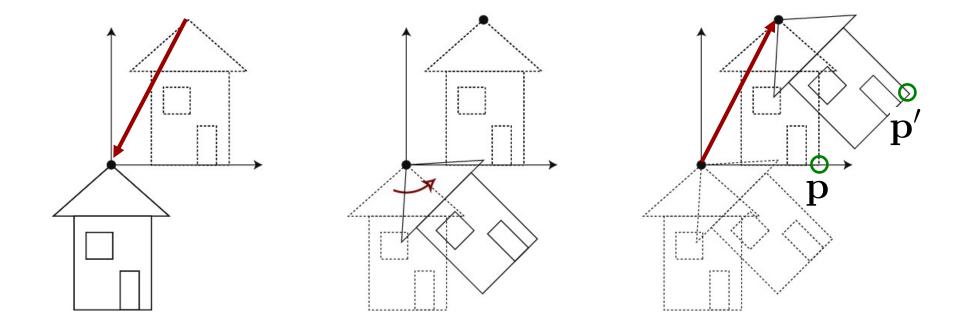


Rotation around origin: p' = R p

Rotation around pivot point: p' = ?

9

Rotating point p around a pivot point



1. Translation T 2. Rotation R 3. Translation T⁻¹

 $p' = T^{-1} R T p$

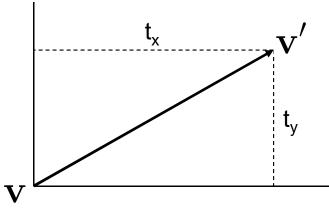
10

Today

- Vectors and matrices
- Affine transformations
- Homogeneous coordinates

Translation

Translation in 2D



Translation matrix T=?

$$v' = \begin{bmatrix} v_x \\ v_y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix} = Tv = T\begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

Translation

Translation in 2D: 3x3 matrix

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Analogous in 3D: 4x4 matrix

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{t}_x \\ 0 & 1 & 0 & \mathbf{t}_y \\ 0 & 0 & 1 & \mathbf{t}_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{w} \end{bmatrix}$$

Homogeneous Coordinates

- A trick to unify and simplify computations, in particular:
 - affine transformations (esp. rotation, scaling, translation)
 - projective transformations

Homogeneous Coordinates

Add an extra component. I for a point, 0 for a vector:

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} \qquad \begin{array}{c} \mathbf{v} \\ \mathbf{v}$$

• Combine **M** and **d** into single 4x4 matrix:

$$\begin{bmatrix} m_{xx} & m_{xy} & m_{xz} & d_x \\ m_{yx} & m_{yy} & m_{yz} & d_y \\ m_{zx} & m_{zy} & m_{zz} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

And see what happens when we multiply...

Homogeneous Point Transform

Transform a point:

$$\begin{bmatrix} p'_{x} \\ p'_{y} \\ p'_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} m_{xx} & m_{xy} & m_{xz} & d_{x} \\ m_{yx} & m_{yy} & m_{yz} & d_{y} \\ m_{zx} & m_{zy} & m_{zz} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} m_{xx}p_{x} + m_{xy}p_{y} + m_{xz}p_{z} \\ m_{zx}p_{x} + m_{zy}p_{y} + m_{zz}p_{z} \\ 0 + 0 + 0 + 1 \end{bmatrix}$$

$$M\begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \end{bmatrix} + d$$

- Top three rows are the affine transform!
- Bottom row stays I

Þ

Homogeneous Vector Transform

Transform a vector:

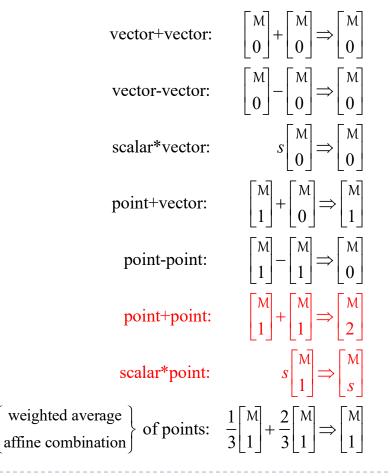
$$\begin{bmatrix} v'_{x} \\ v'_{y} \\ v'_{z} \\ 0 \end{bmatrix} = \begin{bmatrix} m_{xx} & m_{xy} & m_{xz} & d_{x} \\ m_{yx} & m_{yy} & m_{yz} & d_{y} \\ m_{zx} & m_{zy} & m_{zz} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \\ 0 \end{bmatrix} = \begin{bmatrix} m_{xx}v_{x} + m_{xy}v_{y} + m_{xz}v_{z} + 0 \\ m_{yx}v_{x} + m_{yy}v_{y} + m_{yz}v_{z} + 0 \\ 0 + 0 + 0 + 0 \end{bmatrix}$$

- Top three rows are the linear transform
 - Displacement d is properly ignored
- Bottom row stays 0

Homogeneous Arithmetic

Þ

Legal operations always end in 0 or 1!



Homogeneous Transforms

Rotation, Scale, and Translation of points and vectors unified in a single matrix transformation:

 $\mathbf{p'} = \mathbf{M} \ \mathbf{p}$

Matrix has the form:
Last row always 0,0,0,1

$$\begin{bmatrix} m_{xx} & m_{xy} & m_{xz} & d_x \\ m_{yx} & m_{yy} & m_{yz} & d_y \\ m_{zx} & m_{zy} & m_{zz} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transforms can be composed by matrix multiplication

- Same caveat: order of operations is important
- Same note: transforms operate right-to-left

4x4 Scale Matrix

• Generic form:

0	0	0]
t	0	0
0	и	0
0	0	1
	t 0	t 0 0 u

Inverse:

$$\begin{bmatrix} \frac{1}{s} & 0 & 0 & 0 \\ 0 & \frac{1}{t} & 0 & 0 \\ 0 & 0 & \frac{1}{u} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4x4 Rotation Matrix

• Generic form:

$$\begin{bmatrix} r_1 & r_2 & r_3 & 0 \\ r_4 & r_5 & r_6 & 0 \\ r_7 & r_8 & r_9 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse = transpose:

$$\begin{bmatrix} r_1 & r_4 & r_7 & 0 \\ r_2 & r_5 & r_8 & 0 \\ r_3 & r_6 & r_9 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation matrices are orthogonal

21

4x4 Translation Matrix

• Generic form:

$$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse:

$$\begin{bmatrix} 1 & 0 & 0 & -t_x \\ 0 & 1 & 0 & -t_y \\ 0 & 0 & 1 & -t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Today

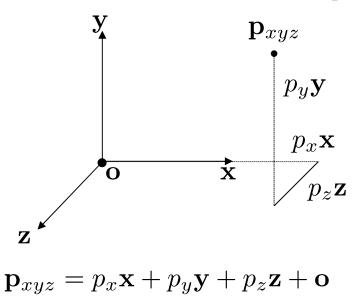
- Coordinate Transformation
- Typical Coordinate Systems

Coordinate System

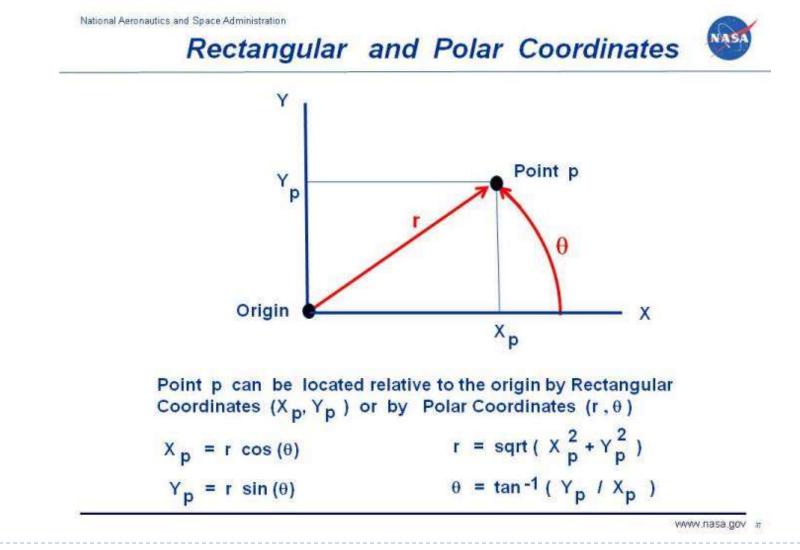
- Given point **p** in homogeneous coordinates:
- Coordinates describe the point's 3D position in a coordinate system with basis vectors x, y, z and origin o:

 p_x

 $p_y \ p_z$

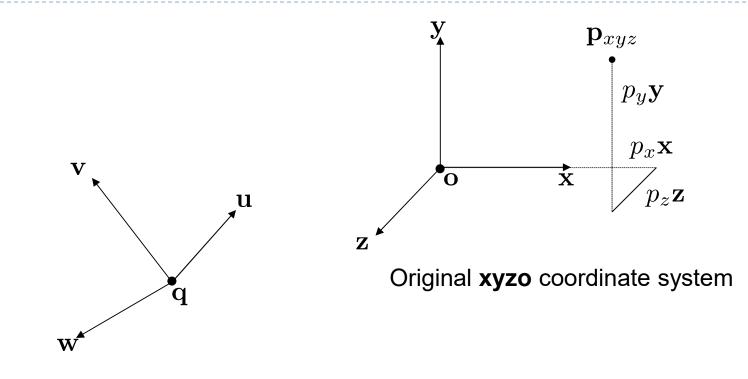


Rectangular and Polar Coordinates



25

Coordinate Transformation

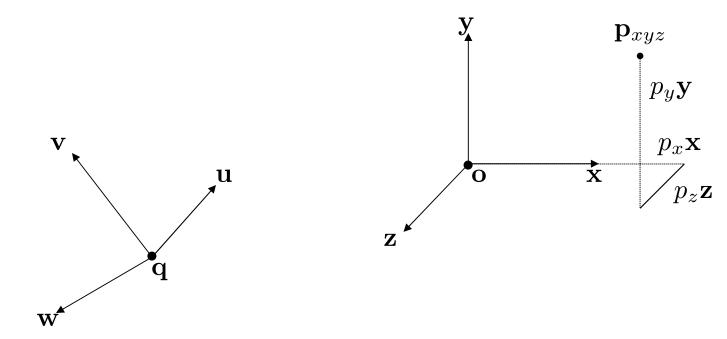


New uvwq coordinate system

Goal: Find coordinates of \mathbf{p}_{xyz} in new **uvwq** coordinate system

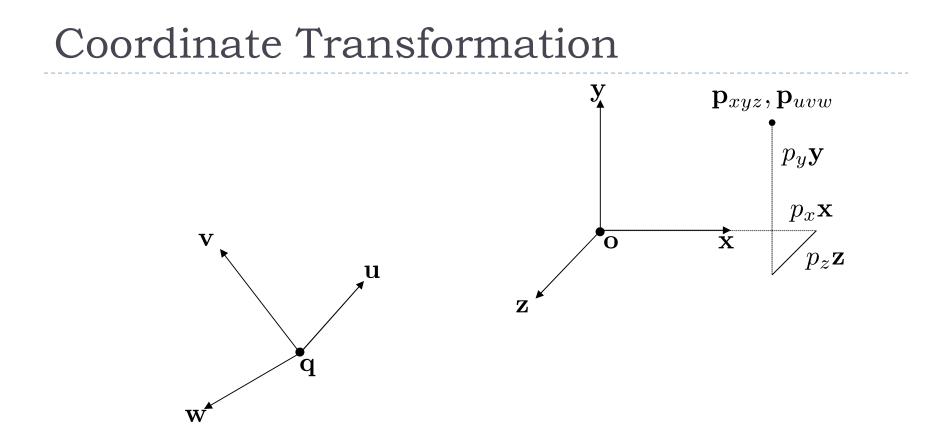
26

Coordinate Transformation



Express coordinates of xyzo reference frame with respect to uvwq reference frame:

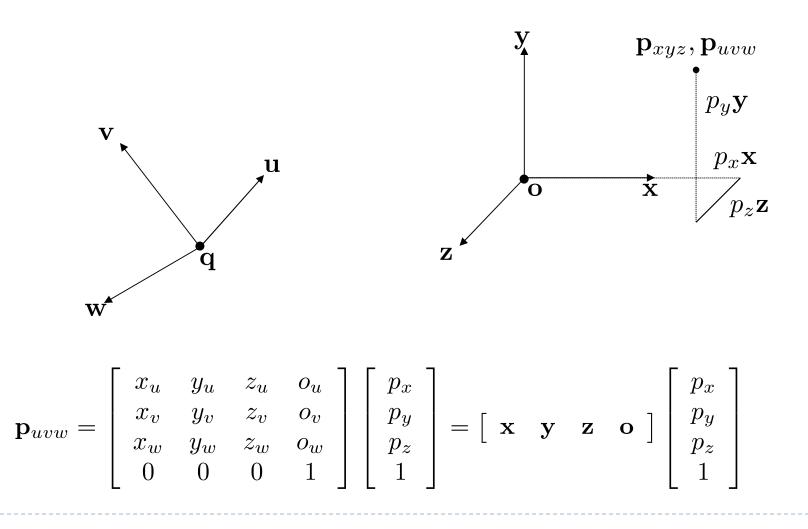
$$\mathbf{x} = \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} \mathbf{z} = \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} \mathbf{o} = \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix}$$



Point p expressed in new uvwq reference frame:

$$\mathbf{p}_{uvw} = p_x \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} + p_y \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} + p_z \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} + \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix} - \dots$$

Coordinate Transformation



29

Coordinate Transformation

Inverse transformation

- ► Given point **P**_{uvw} w.r.t. reference frame **uvwq**:
 - Coordinates P_{xyz} w.r.t. reference frame xyzo are calculated as:

$$\mathbf{p}_{xyz} = \begin{bmatrix} x_u & y_u & z_u & o_u \\ x_v & y_v & z_v & o_v \\ x_w & y_w & z_w & o_w \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} p_u \\ p_v \\ p_w \\ 1 \end{bmatrix}$$

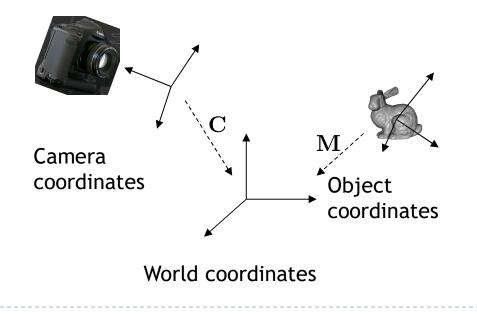
Lecture Overview

- Coordinate Transformation
- Typical Coordinate Systems

Typical Coordinate Systems

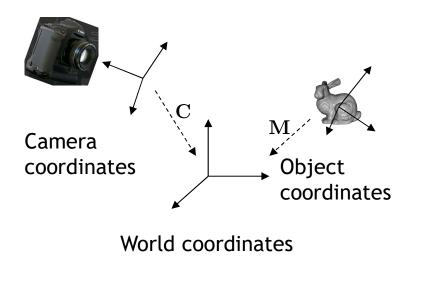
- In computer graphics, we typically use at least three coordinate systems:
 - World coordinate system
 - Camera coordinate system
 - Object coordinate system

D



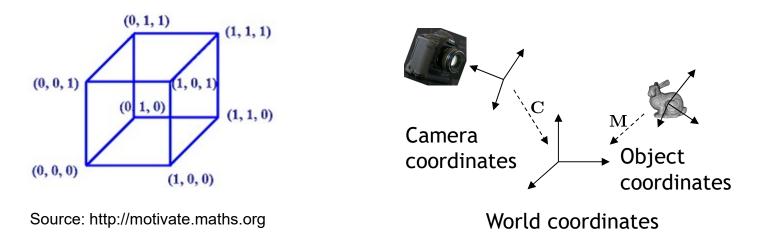
World Coordinates

- Common reference frame for all objects in the scene
- No standard for coordinate system orientation
 - If there is a ground plane, usually x/y is horizontal and z points up (height)
 - Otherwise, x/y is often screen plane, z points out of the screen



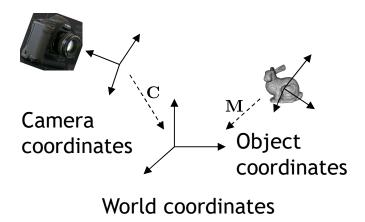
Object Coordinates

- Local coordinates in which points and other object geometry are given
- Often origin is in geometric center, on the base, or in a corner of the object
 - > Depends on how object is generated or used.



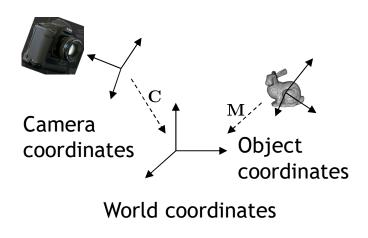
Object Transformation

- The transformation from object to world coordinates is different for each object.
- Defines placement of object in scene.
- ▶ Given by "model matrix" (model-to-world transformation) **M**.



Camera Coordinate System

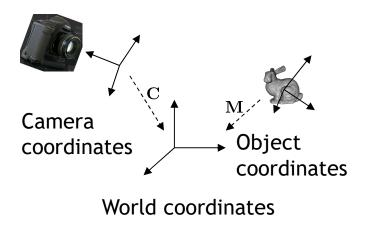
- Origin defines center of projection of camera
- x-y plane is parallel to image plane
- z-axis is perpendicular to image plane



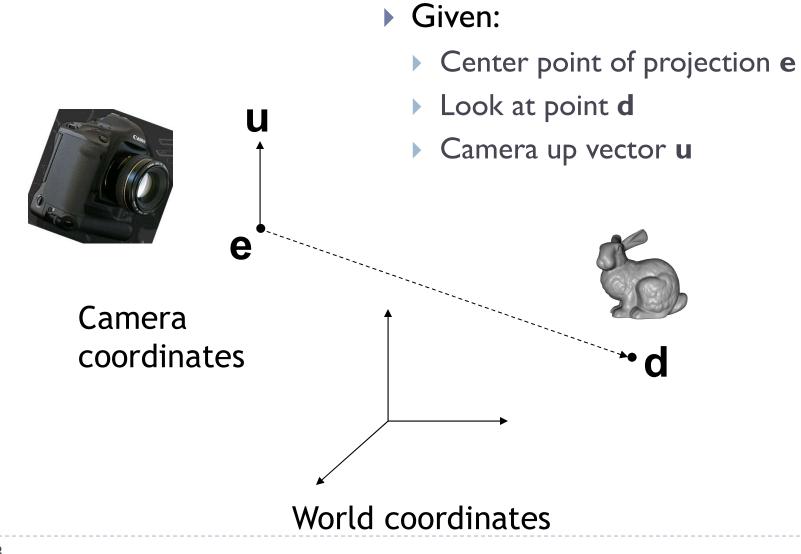
Camera Coordinate System

The Camera Matrix defines the transformation from camera to world coordinates

Placement of camera in world

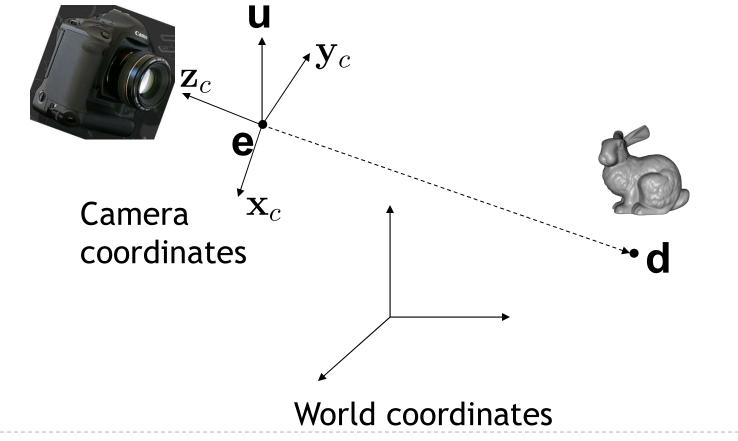


Camera Matrix



Camera Matrix

Construct x_c, y_c, z_c



Camera Matrix

Step I:z-axis $z_C = \frac{e-d}{\|e-d\|}$

Step 2: x-axis
$$x_C = \frac{u \times z_C}{\|u \times z_C\|}$$

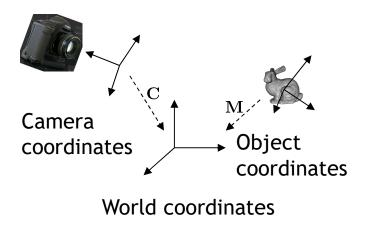
• Step 3: y-axis
$$y_c = z_c \times x_c = \frac{u}{\|u\|}$$

• Camera Matrix:
$$C = \begin{bmatrix} x_c & y_c & z_c & e \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• 40

Transforming Object to Camera Coordinates

- Object to world coordinates: M
- Camera to world coordinates: C
- Point to transform: p
- Resulting transformation equation: p' = C⁻¹ M p



Tips for Notation

Indicate coordinate systems with every point or matrix

- Point: p_{object}
- ► Matrix: M_{object}→world

Resulting transformation equation:

 $\mathbf{p}_{camera} = (\mathbf{C}_{camera \rightarrow world})^{-1} \mathbf{M}_{object \rightarrow world} \mathbf{p}_{object}$

- In source code use similar names:
 - Point:p_object or p_obj or p_o
 - Matrix: object2world or obj2wld or o2w
- Resulting transformation equation:

wld2cam = inverse(cam2wld);

p_cam = p_obj * obj2wld * wld2cam;

Inverse of Camera Matrix

- ▶ How to calculate the inverse of camera matrix C⁻¹?
- Generic matrix inversion is complex and computeintensive!
- Solution: affine transformation matrices can be inverted more easily
- Observation:
 - \blacktriangleright Camera matrix consists of translation and rotation: $\textbf{T} \times \textbf{R}$
- Inverse of rotation: $\mathbf{R}^{-1} = \mathbf{R}^{\top}$
- Inverse of translation: T(t)⁻¹ = T(-t)
- Inverse of camera matrix: $C^{-1} = R^{-1} \times T^{-1}$

Objects in Camera Coordinates

• We have things lined up the way we like them on screen

- **x** points to the right
- **y** points up
- -z into the screen (i.e., z points out of the screen)
- Objects to look at are in front of us, i.e., have negative z values
- But objects are still in 3D
- Next step: project scene to 2D plane