
CSE 167:
Introduction to Computer Graphics
Lecture #4: Coordinate Systems

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2018



Announcements
 Tomorrow: Discussion at 3pm in Center Hall 109

 Next Friday: homework 2 due at 2pm
 Upload to TritonEd
 Demonstrate in CSE basement labs
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Today

 Finish up linear algebra foundations
 Coordinate system transformations
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Rotation in 2D

 Convention: positive angle rotates counterclockwise
 Rotation matrix
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Rotation in 3D

Rotation around coordinate axes
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Rotation in 3D

 Concatenation of rotations around x, y, z axes

 are called Euler angles
 Result depends on matrix order!
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Rotation about an Arbitrary Axis

 Complicated!
 Rotate point [x,y,z] about axis [u,v,w] by angle θ:
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Concatenating transformations

 Given a sequence of transformations M3M2M1

 Note: associativity applies

 Efficient inversion (when the components are “simple”)
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How to rotate around a Pivot Point?

Rotation around 
origin:
p’ = R p

Rotation around 
pivot point:
p’ = ?
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Rotating point p around a pivot point

1. Translation T 2. Rotation R 3. Translation T-1
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p’ = T-1 R T p



Today

 Vectors and matrices
 Affine transformations
 Homogeneous coordinates
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Translation

 Translation in 2D

 Translation matrix T=?
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Translation

 Translation in 2D: 3x3 matrix

 Analogous in 3D: 4x4 matrix
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Homogeneous Coordinates

 A trick to unify and simplify computations, in 
particular:
 affine transformations (esp. rotation, scaling, translation)
 projective transformations
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Homogeneous Coordinates
 Add an extra component. 1 for a point, 0 for a vector:

 Combine M and d into single 4x4 matrix:

 And see what happens when we multiply…
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Homogeneous Point Transform

 Transform a point:

 Top three rows are the affine transform!
 Bottom row stays 1
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Homogeneous Vector Transform
 Transform a vector:

 Top three rows are the linear transform
 Displacement d is properly ignored

 Bottom row stays 0
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Homogeneous Arithmetic

 Legal operations always end in 0 or 1! 
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Homogeneous Transforms
 Rotation, Scale, and Translation of points and vectors 

unified in a single matrix transformation:

 Matrix has the form:
 Last row always 0,0,0,1

 Transforms can be composed by matrix multiplication
 Same caveat: order of operations is important
 Same note: transforms operate right-to-left
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4x4 Scale Matrix

 Generic form:

 Inverse:
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4x4 Rotation Matrix

 Generic form:

 Inverse = transpose:

 Rotation matrices are orthogonal
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4x4 Translation Matrix

 Generic form:

 Inverse:
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Today

 Coordinate Transformation
 Typical Coordinate Systems
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Coordinate System

 Given point p in homogeneous coordinates:

 Coordinates describe the point’s 3D position in a 
coordinate system with basis vectors x, y, z and origin o: 
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Rectangular and Polar Coordinates
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Coordinate Transformation

New uvwq coordinate system

Goal: Find coordinates of pxyz in new uvwq coordinate system
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Original xyzo coordinate system



Coordinate Transformation

Express coordinates of xyzo reference frame 
with respect to uvwq reference frame:

27



Coordinate Transformation

Point p expressed in new uvwq reference frame:
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Coordinate Transformation
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Coordinate Transformation

Inverse transformation
 Given point Puvw w.r.t. reference frame uvwq:

 Coordinates Pxyz w.r.t. reference frame xyzo are calculated as:
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Lecture Overview

 Coordinate Transformation
 Typical Coordinate Systems
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Typical Coordinate Systems

 In computer graphics, we typically use at least three 
coordinate systems:
 World coordinate system
 Camera coordinate system
 Object coordinate system

World coordinates

Object
coordinates

Camera
coordinates



World Coordinates

 Common reference frame for all objects in the scene
 No standard for coordinate system orientation

 If there is a ground plane, usually x/y is horizontal and z points 
up (height)

 Otherwise, x/y is often screen plane, z points out of the screen

World coordinates

Object
coordinates

Camera
coordinates
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Object Coordinates

 Local coordinates in which points and other object 
geometry are given

 Often origin is in geometric center, on the base, or in a 
corner of the object
 Depends on how object is generated or used.

World coordinates

Object
coordinates

Camera
coordinates
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Source: http://motivate.maths.org



Object Transformation
 The transformation from object to world coordinates is 

different for each object.

 Defines placement of object in scene.

 Given by “model matrix” (model-to-world transformation) M.
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Camera Coordinate System

 Origin defines center of projection of camera
 x-y plane is parallel to image plane
 z-axis is perpendicular to image plane

World coordinates

Object
coordinates

Camera
coordinates
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Camera Coordinate System

 The Camera Matrix defines the transformation from 
camera to world coordinates
 Placement of camera in world

World coordinates

Object
coordinates

Camera
coordinates
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Camera Matrix
 Given:

 Center point of projection e
 Look at point d
 Camera up vector u

World coordinates

Camera
coordinates
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Camera Matrix

 Construct xc, yc, zc

World coordinates

Camera
coordinates
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Camera Matrix

 Step 1: z-axis

 Step 2: x-axis

 Step 3: y-axis

 Camera Matrix:
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Transforming Object to Camera Coordinates

 Object to world coordinates: M
 Camera to world coordinates: C
 Point to transform: p
 Resulting transformation equation: p’ = C-1 M p
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Tips for Notation

 Indicate coordinate systems with every point or matrix
 Point: pobject

 Matrix: Mobjectworld

 Resulting transformation equation:
pcamera = (Ccameraworld)-1 Mobjectworld pobject

 In source code use similar names:
 Point: p_object or p_obj or p_o

 Matrix: object2world or obj2wld or o2w

 Resulting transformation equation:
wld2cam = inverse(cam2wld);
p_cam = p_obj * obj2wld * wld2cam;
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Inverse of Camera Matrix

 How to calculate the inverse of camera matrix C-1?
 Generic matrix inversion is complex and compute-

intensive!
 Solution: affine transformation matrices can be inverted 

more easily
 Observation: 

 Camera matrix consists of translation and rotation: T x R

 Inverse of rotation: R-1 = RT

 Inverse of translation: T(t)-1 = T(-t)
 Inverse of camera matrix: C-1 = R-1 xT-1
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Objects in Camera Coordinates

 We have things lined up the way we like them on screen
 x points to the right
 y points up
 -z into the screen (i.e., z points out of the screen)
 Objects to look at are in front of us, i.e., have negative z values

 But objects are still in 3D
 Next step: project scene to 2D plane
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