
CSE 167:
Introduction to Computer Graphics
Lecture #4: Coordinate Systems

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2018



Announcements
 Tomorrow: Discussion at 3pm in Center Hall 109

 Next Friday: homework 2 due at 2pm
 Upload to TritonEd
 Demonstrate in CSE basement labs

2



Today

 Finish up linear algebra foundations
 Coordinate system transformations

3



Rotation in 2D

 Convention: positive angle rotates counterclockwise
 Rotation matrix

4



Rotation in 3D

Rotation around coordinate axes

5



Rotation in 3D

 Concatenation of rotations around x, y, z axes

 are called Euler angles
 Result depends on matrix order!

6



Rotation about an Arbitrary Axis

 Complicated!
 Rotate point [x,y,z] about axis [u,v,w] by angle θ:

7



Concatenating transformations

 Given a sequence of transformations M3M2M1

 Note: associativity applies

 Efficient inversion (when the components are “simple”)

8



How to rotate around a Pivot Point?

Rotation around 
origin:
p’ = R p

Rotation around 
pivot point:
p’ = ?

9



Rotating point p around a pivot point

1. Translation T 2. Rotation R 3. Translation T-1

10

p’ = T-1 R T p



Today

 Vectors and matrices
 Affine transformations
 Homogeneous coordinates

11



Translation

 Translation in 2D

 Translation matrix T=?

12

tx

ty



Translation

 Translation in 2D: 3x3 matrix

 Analogous in 3D: 4x4 matrix

13



14

Homogeneous Coordinates

 A trick to unify and simplify computations, in 
particular:
 affine transformations (esp. rotation, scaling, translation)
 projective transformations



15

Homogeneous Coordinates
 Add an extra component. 1 for a point, 0 for a vector:

 Combine M and d into single 4x4 matrix:

 And see what happens when we multiply…

 

p 

px

py

pz

1



















        
r
v 

vx
vy
vz
0



















mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1





















16

Homogeneous Point Transform

 Transform a point:

 Top three rows are the affine transform!
 Bottom row stays 1

 

px

py

pz

1



















 

mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1



















px

py

pz

1





















mxx px  mxypy  mxz pz  dx

myx px  myypy  myz pz  dy

mzx px  mzy py  mzz pz  dz

0  0  0 1



















                                                         M

px

py

pz
















        

r
d



17

Homogeneous Vector Transform
 Transform a vector:

 Top three rows are the linear transform
 Displacement d is properly ignored

 Bottom row stays 0

vx
vy
vz
0



















 

mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1



















vx
vy
vz
0





















mxxvx  mxyvy  mxzvz  0

myxvx  myyvy  myzvz  0

mzxvx  mzyvy  mzzvz  0

0  0  0  0



















                                                           M

vx
vy
vz
















 



18

Homogeneous Arithmetic

 Legal operations always end in 0 or 1! 

 

vector+vector:       
M

0








 

M

0








 

M

0










vector-vector:       
M

0








 

M

0








 

M

0










scalar*vector:               s
M

0








 

M

0










point+vector:         
M

1








 

M

0








 

M

1










point-point:         
M

1








 

M

1








 

M

0










point+point:        
M

1








 

M

1








 

M

2










scalar*point:                s
M

1








 

M

s










weighted average

affine combination








 of points:   

1

3

M

1








 

2

3

M

1








 

M

1












19

Homogeneous Transforms
 Rotation, Scale, and Translation of points and vectors 

unified in a single matrix transformation:

 Matrix has the form:
 Last row always 0,0,0,1

 Transforms can be composed by matrix multiplication
 Same caveat: order of operations is important
 Same note: transforms operate right-to-left

mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1



















p  M p



4x4 Scale Matrix

 Generic form:

 Inverse:

భ

ೞ
భ

೟
భ

ೠ

20



4x4 Rotation Matrix

 Generic form:

 Inverse = transpose:

 Rotation matrices are orthogonal

21



4x4 Translation Matrix

 Generic form:

 Inverse:

22



Today

 Coordinate Transformation
 Typical Coordinate Systems

23



Coordinate System

 Given point p in homogeneous coordinates:

 Coordinates describe the point’s 3D position in a 
coordinate system with basis vectors x, y, z and origin o: 

24



Rectangular and Polar Coordinates

25



Coordinate Transformation

New uvwq coordinate system

Goal: Find coordinates of pxyz in new uvwq coordinate system

26

Original xyzo coordinate system



Coordinate Transformation

Express coordinates of xyzo reference frame 
with respect to uvwq reference frame:

27



Coordinate Transformation

Point p expressed in new uvwq reference frame:

28



Coordinate Transformation

29



Coordinate Transformation

Inverse transformation
 Given point Puvw w.r.t. reference frame uvwq:

 Coordinates Pxyz w.r.t. reference frame xyzo are calculated as:

30



Lecture Overview

 Coordinate Transformation
 Typical Coordinate Systems

31



Typical Coordinate Systems

 In computer graphics, we typically use at least three 
coordinate systems:
 World coordinate system
 Camera coordinate system
 Object coordinate system

World coordinates

Object
coordinates

Camera
coordinates



World Coordinates

 Common reference frame for all objects in the scene
 No standard for coordinate system orientation

 If there is a ground plane, usually x/y is horizontal and z points 
up (height)

 Otherwise, x/y is often screen plane, z points out of the screen

World coordinates

Object
coordinates

Camera
coordinates

33



Object Coordinates

 Local coordinates in which points and other object 
geometry are given

 Often origin is in geometric center, on the base, or in a 
corner of the object
 Depends on how object is generated or used.

World coordinates

Object
coordinates

Camera
coordinates

34

Source: http://motivate.maths.org



Object Transformation
 The transformation from object to world coordinates is 

different for each object.

 Defines placement of object in scene.

 Given by “model matrix” (model-to-world transformation) M.

35

World coordinates

Object
coordinates

Camera
coordinates



Camera Coordinate System

 Origin defines center of projection of camera
 x-y plane is parallel to image plane
 z-axis is perpendicular to image plane

World coordinates

Object
coordinates

Camera
coordinates

36



Camera Coordinate System

 The Camera Matrix defines the transformation from 
camera to world coordinates
 Placement of camera in world

World coordinates

Object
coordinates

Camera
coordinates

37



Camera Matrix
 Given:

 Center point of projection e
 Look at point d
 Camera up vector u

World coordinates

Camera
coordinates

38

u

e

d



Camera Matrix

 Construct xc, yc, zc

World coordinates

Camera
coordinates

39

u

e

d



Camera Matrix

 Step 1: z-axis

 Step 2: x-axis

 Step 3: y-axis

 Camera Matrix:

40

஼

஼
஼

஼

஼ ஼ ஼

஼ ஼ ஼



Transforming Object to Camera Coordinates

 Object to world coordinates: M
 Camera to world coordinates: C
 Point to transform: p
 Resulting transformation equation: p’ = C-1 M p

41

World coordinates

Object
coordinates

Camera
coordinates



Tips for Notation

 Indicate coordinate systems with every point or matrix
 Point: pobject

 Matrix: Mobjectworld

 Resulting transformation equation:
pcamera = (Ccameraworld)-1 Mobjectworld pobject

 In source code use similar names:
 Point: p_object or p_obj or p_o

 Matrix: object2world or obj2wld or o2w

 Resulting transformation equation:
wld2cam = inverse(cam2wld);
p_cam = p_obj * obj2wld * wld2cam;

42



Inverse of Camera Matrix

 How to calculate the inverse of camera matrix C-1?
 Generic matrix inversion is complex and compute-

intensive!
 Solution: affine transformation matrices can be inverted 

more easily
 Observation: 

 Camera matrix consists of translation and rotation: T x R

 Inverse of rotation: R-1 = RT

 Inverse of translation: T(t)-1 = T(-t)
 Inverse of camera matrix: C-1 = R-1 xT-1

43



Objects in Camera Coordinates

 We have things lined up the way we like them on screen
 x points to the right
 y points up
 -z into the screen (i.e., z points out of the screen)
 Objects to look at are in front of us, i.e., have negative z values

 But objects are still in 3D
 Next step: project scene to 2D plane

44


