## CSE 167: <br> Introduction to Computer Graphics Lecture \#4: Coordinate Systems

Jürgen P. Schulze, Ph.D.<br>University of California, San Diego<br>Fall Quarter 2018

## Announcements

- Tomorrow: Discussion at 3pm in Center Hall 109
- Next Friday: homework 2 due at 2 pm
- Upload to TritonEd
- Demonstrate in CSE basement labs


## Today

- Finish up linear algebra foundations
- Coordinate system transformations


## Rotation in 2D

- Convention: positive angle rotates counterclockwise
- Rotation matrix

$$
\mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$



$$
\mathbf{v}^{\prime}=\mathbf{R}(\theta) \mathbf{v}
$$

## Rotation in 3D

Rotation around coordinate axes

$$
\begin{aligned}
& \mathbf{R}_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& \mathbf{R}_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& \mathbf{R}_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

## Rotation in 3D

- Concatenation of rotations around $x, y, z$ axes

$$
\mathbf{R}_{x, y, z}\left(\theta_{x}, \theta_{y}, \theta_{z}\right)=\mathbf{R}_{x}\left(\theta_{x}\right) \mathbf{R}_{y}\left(\theta_{y}\right) \mathbf{R}_{z}\left(\theta_{z}\right)
$$

- $\theta_{x}, \theta_{y}, \theta_{z}$ are called Euler angles
- Result depends on matrix order!

$$
\mathbf{R}_{x}\left(\theta_{x}\right) \mathbf{R}_{y}\left(\theta_{y}\right) \mathbf{R}_{z}\left(\theta_{z}\right) \neq \mathbf{R}_{z}\left(\theta_{z}\right) \mathbf{R}_{y}\left(\theta_{y}\right) \mathbf{R}_{x}\left(\theta_{x}\right)
$$

## Rotation about an Arbitrary Axis

## - Complicated!

- Rotate point $[x, y, z]$ about axis [ $u, v, w]$ by angle $\theta$ :

$$
\left[\begin{array}{l}
\frac{u(u x+v y+w z)(1-\cos \theta)+\left(u^{2}+v^{2}+w^{2}\right) x \cos \theta+\sqrt{u^{2}+v^{2}+w^{2}}(-w y+v z) \sin \theta}{u^{2}+v^{2}+w^{2}} \\
\frac{v(u x+v y+w z)(1-\cos \theta)+\left(u^{2}+v^{2}+w^{2}\right) y \cos \theta+\sqrt{u^{2}+v^{2}+w^{2}}(w x-u z) \sin \theta}{u^{2}+v^{2}+w^{2}} \\
\frac{w(u x+v y+w z)(1-\cos \theta)+\left(u^{2}+v^{2}+w^{2}\right) z \cos \theta+\sqrt{u^{2}+v^{2}+w^{2}}(-v x+u y) \sin \theta}{u^{2}+v^{2}+w^{2}}
\end{array}\right]
$$

## Concatenating transformations

- Given a sequence of transformations $\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}$ I

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p} \\
\mathbf{M}_{\text {total }}=\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1} \\
\mathbf{p}^{\prime}=\mathbf{M}_{\text {total } l} \mathbf{p}
\end{gathered}
$$

- Note: associativity applies

$$
\mathbf{M}_{t o t a l}=\left(\mathbf{M}_{3} \mathbf{M}_{2}\right) \mathbf{M}_{1}=\mathbf{M}_{3}\left(\mathbf{M}_{2} \mathbf{M}_{1}\right)
$$

- Efficient inversion (when the components are "simple")

$$
\mathbf{M}_{\text {total }}^{-1}=\mathbf{M}_{1}^{-1} \mathbf{M}_{2}^{-1} \mathbf{M}_{3}^{-1}
$$

## How to rotate around a Pivot Point?



Rotation around origin:
$p^{\prime}=R p$


Rotation around pivot point:
$\mathrm{p}^{\prime}=$ ?

## Rotating point p around a pivot point



1. Translation $\mathrm{T} \quad$ 2. Rotation $\mathrm{R} \quad$ 3. Translation $\mathrm{T}^{-1}$

$$
p^{\prime}=T^{-1} R T p
$$

## Today

- Vectors and matrices
- Affine transformations
- Homogeneous coordinates


## Translation

- Translation in 2D

- Translation matrix T=?

$$
v^{\prime}=\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]=T v=T\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]=\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]
$$

## Translation

- Translation in 2D: $3 \times 3$ matrix

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Analogous in 3D: $4 \times 4$ matrix

$$
\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
z^{\prime} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & \boldsymbol{t}_{\boldsymbol{x}} \\
0 & 1 & 0 & \boldsymbol{t}_{\boldsymbol{y}} \\
0 & 0 & 1 & \boldsymbol{t}_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x} \\
\boldsymbol{y} \\
z \\
\boldsymbol{w}
\end{array}\right]
$$

## Homogeneous Coordinates

- A trick to unify and simplify computations, in particular:
- affine transformations (esp. rotation, scaling, translation)
- projective transformations



## Homogeneous Coordinates

- Add an extra component. I for a point, 0 for a vector:

$$
\mathbf{p}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right] \quad \stackrel{r}{\mathbf{v}}=\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]
$$

- Combine $\mathbf{M}$ and $\mathbf{d}$ into single $4 \times 4$ matrix:

$$
\left[\begin{array}{cccc}
m_{x x} & m_{x y} & m_{x z} & d_{x} \\
m_{y x} & m_{y y} & m_{y z} & d_{y} \\
m_{z x} & m_{z y} & m_{z z} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- And see what happens when we multiply...


## Homogeneous Point Transform

- Transform a point:
- Top three rows are the affine transform!
- Bottom row stays I


## Homogeneous Vector Transform

- Transform a vector:
- Top three rows are the linear transform
- Displacement $\mathbf{d}$ is properly ignored
- Bottom row stays 0


## Homogeneous Arithmetic

- Legal operations always end in 0 or I!

$$
\begin{array}{rlrl}
\text { vector+vector: } & {\left[\begin{array}{l}
M \\
0
\end{array}\right]+\left[\begin{array}{l}
M \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
M \\
0
\end{array}\right]} \\
\text { vector-vector: } & {\left[\begin{array}{l}
M \\
0
\end{array}\right]-\left[\begin{array}{l}
M \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
M \\
0
\end{array}\right]} \\
\text { scalar*vector: } & & s\left[\begin{array}{l}
M \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
M \\
0
\end{array}\right] \\
\text { point+vector: } & & {\left[\begin{array}{l}
M \\
1
\end{array}\right]+\left[\begin{array}{l}
M \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
M \\
1
\end{array}\right]} \\
\text { point-point: } & {\left[\begin{array}{l}
M \\
1
\end{array}\right]-\left[\begin{array}{l}
M \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
M \\
0
\end{array}\right]} \\
\text { point+point: } & {\left[\begin{array}{l}
M \\
1
\end{array}\right]+\left[\begin{array}{l}
M \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
M \\
2
\end{array}\right]} \\
\text { scalar*point: } & S\left[\begin{array}{l}
M \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
M \\
S
\end{array}\right] \\
\left\{\begin{array}{c}
\text { weighted average } \\
\text { affine combination }
\end{array}\right\} \text { of points: } & \frac{1}{3}\left[\begin{array}{l}
M \\
1
\end{array}\right]+\frac{2}{3}\left[\begin{array}{l}
M \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
M \\
1
\end{array}\right]
\end{array}
$$

## Homogeneous Transforms

- Rotation, Scale, and Translation of points and vectors unified in a single matrix transformation:

$$
\mathbf{p}^{\prime}=\mathbf{M} \mathbf{p}
$$

- Matrix has the form:
- Last row always $0,0,0,1$

$$
\left[\begin{array}{cccc}
m_{x x} & m_{x y} & m_{x z} & d_{x} \\
m_{y x} & m_{y y} & m_{y z} & d_{y} \\
m_{z x} & m_{z y} & m_{z z} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Transforms can be composed by matrix multiplication
- Same caveat: order of operations is important
, Same note: transforms operate right-to-left


## 4x4 Scale Matrix

- Generic form:

$$
\left[\begin{array}{llll}
s & 0 & 0 & 0 \\
0 & t & 0 & 0 \\
0 & 0 & u & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
\frac{1}{s} & 0 & 0 & 0 \\
0 & \frac{1}{t} & 0 & 0 \\
0 & 0 & \frac{1}{u} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## 4x4 Rotation Matrix

- Generic form:

$$
\left[\begin{array}{cccc}
r_{1} & r_{2} & r_{3} & 0 \\
r_{4} & r_{5} & r_{6} & 0 \\
r_{7} & r_{8} & r_{9} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Inverse = transpose:
$\left[\begin{array}{cccc}r_{1} & r_{4} & r_{7} & 0 \\ r_{2} & r_{5} & r_{8} & 0 \\ r_{3} & r_{6} & r_{9} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
- Rotation matrices are orthogonal


## 4x4 Translation Matrix

- Generic form:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -t_{x} \\
0 & 1 & 0 & -t_{y} \\
0 & 0 & 1 & -t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## Today

- Coordinate Transformation
- Typical Coordinate Systems


## Coordinate System

- Given point $\mathbf{p}$ in homogeneous coordinates: $\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right]$
- Coordinates describe the point's 3D position in a coordinate system with basis vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ and origin $\mathbf{o}$ :



## Rectangular and Polar Coordinates

National Aeronautics and Space Administration
Rectangular and Polar Coordinates


Point p can be located relative to the origin by Rectangular Coordinates $\left(X_{p}, Y_{p}\right)$ or by Polar Coordinates ( $r, \theta$ )

$$
\begin{array}{ll}
X_{p}=r \cos (\theta) & r=\operatorname{sqrt}\left(X_{p}^{2}+Y_{p}^{2}\right) \\
Y_{p}=r \sin (\theta) & \theta=\tan -1\left(Y_{p} / X_{p}\right)
\end{array}
$$

## Coordinate Transformation



Original xyzo coordinate system

New uvwq coordinate system

Goal: Find coordinates of $\mathbf{p}_{\mathrm{xyz}}$ in new uvwq coordinate system

## Coordinate Transformation



Express coordinates of xyzo reference frame with respect to uvwq reference frame:
$\mathbf{x}=\left[\begin{array}{c}x_{u} \\ x_{v} \\ x_{w} \\ 0\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}y_{u} \\ y_{v} \\ y_{w} \\ 0\end{array}\right]$
$\mathbf{z}=\left[\begin{array}{c}z_{u} \\ z_{v} \\ z_{w} \\ 0\end{array}\right]$
$\mathbf{o}=\left[\begin{array}{c}o_{u} \\ o_{v} \\ o_{w} \\ 1\end{array}\right]$

## Coordinate Transformation



Point $\mathbf{p}$ expressed in new uvwq reference frame:

$$
\mathbf{p}_{u v w}=p_{x}\left[\begin{array}{c}
x_{u} \\
x_{v} \\
x_{w} \\
0
\end{array}\right]+p_{y}\left[\begin{array}{c}
y_{u} \\
y_{v} \\
y_{w} \\
0
\end{array}\right]+p_{z}\left[\begin{array}{c}
z_{u} \\
z_{v} \\
z_{w} \\
0
\end{array}\right]+\left[\begin{array}{c}
o_{u} \\
o_{v} \\
o_{w} \\
1
\end{array}\right]
$$

## Coordinate Transformation



## Coordinate Transformation

## Inverse transformation

- Given point $\mathbf{P}_{\text {uvw }}$ w.r.t. reference frame uvwq:
- Coordinates $\mathbf{P}_{\text {xyz }}$ w.r.t. reference frame xyzo are calculated as:

$$
\mathbf{p}_{x y z}=\left[\begin{array}{cccc}
x_{u} & y_{u} & z_{u} & o_{u} \\
x_{v} & y_{v} & z_{v} & o_{v} \\
x_{w} & y_{w} & z_{w} & o_{w} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
p_{u} \\
p_{v} \\
p_{w} \\
1
\end{array}\right]
$$

## Lecture Overview

- Coordinate Transformation
- Typical Coordinate Systems


## Typical Coordinate Systems

- In computer graphics, we typically use at least three coordinate systems:
- World coordinate system
- Camera coordinate system
- Object coordinate system


World coordinates

## World Coordinates

- Common reference frame for all objects in the scene
- No standard for coordinate system orientation
- If there is a ground plane, usually $x / y$ is horizontal and $z$ points up (height)
- Otherwise, $x / y$ is often screen plane, $z$ points out of the screen


World coordinates

## Object Coordinates

- Local coordinates in which points and other object geometry are given
- Often origin is in geometric center, on the base, or in a corner of the object
- Depends on how object is generated or used.


Source: http://motivate.maths.org


World coordinates

## Object Transformation

- The transformation from object to world coordinates is different for each object.
- Defines placement of object in scene.
- Given by "model matrix" (model-to-world transformation) M.


World coordinates

## Camera Coordinate System

- Origin defines center of projection of camera
- x-y plane is parallel to image plane
- z-axis is perpendicular to image plane


World coordinates

## Camera Coordinate System

- The Camera Matrix defines the transformation from camera to world coordinates
- Placement of camera in world


World coordinates

## Camera Matrix

- Given:
- Center point of projection $\mathbf{e}$



## Camera coordinates



World coordinates

## Camera Matrix

- Construct $\mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}}, \mathbf{z}_{\mathbf{c}}$



## Camera Matrix

- Step I: z-axis

$$
z_{C}=\frac{\boldsymbol{e}-\boldsymbol{d}}{\|\boldsymbol{e}-\boldsymbol{d}\|}
$$

- Step 2: x-axis

$$
\boldsymbol{x}_{C}=\frac{\boldsymbol{u} \times \boldsymbol{z}_{C}}{\left\|\boldsymbol{u} \times \boldsymbol{z}_{C}\right\|}
$$

- Step 3: $y$-axis

$$
\boldsymbol{y}_{C}=\boldsymbol{z}_{C} \times \boldsymbol{x}_{C}=\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}
$$

Camera Matrix:

$$
\boldsymbol{C}=\left[\begin{array}{cccc}
\boldsymbol{x}_{C} & y_{C} & z_{C} & e \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## Transforming Object to Camera Coordinates

- Object to world coordinates: M
- Camera to world coordinates: C
- Point to transform: $\mathbf{p}$
- Resulting transformation equation: $\mathbf{p}^{\prime}=\mathbf{C}^{-1} \mathbf{M} \mathbf{p}$


World coordinates

## Tips for Notation

- Indicate coordinate systems with every point or matrix
- Point: ${ }^{\text {object }}$
- Matrix: $\mathbf{M}_{\text {object } \rightarrow \text { world }}$
- Resulting transformation equation:

$$
\mathbf{P}_{\text {camera }}=\left(\mathbf{C}_{\text {camera } \rightarrow \text { world }}\right)^{-1} \mathbf{M}_{\text {object } \rightarrow \text { world }} \mathbf{P}_{\text {object }}
$$

- In source code use similar names:
- Point:p_object or p_obj or p_o
- Matrix: object2world or obj2wld or o2w
- Resulting transformation equation:

```
wld2cam = inverse(cam2wld);
p_cam = p_obj * obj2wld * wld2cam;
```


## Inverse of Camera Matrix

- How to calculate the inverse of camera matrix $\mathbf{C}^{-1}$ ?
- Generic matrix inversion is complex and computeintensive!
- Solution: affine transformation matrices can be inverted more easily
- Observation:
- Camera matrix consists of translation and rotation: $\mathbf{T} \times \mathbf{R}$
- Inverse of rotation: $\mathbf{R}^{-1}=\mathbf{R}^{\top}$
- Inverse of translation: $\mathbf{T}(\mathrm{t})^{-1}=\mathbf{T}(-\mathrm{t})$
- Inverse of camera matrix: $\mathbf{C}^{-1}=\mathbf{R}^{-1} \times \mathbf{T}^{-1}$


## Objects in Camera Coordinates

- We have things lined up the way we like them on screen
> $\mathbf{x}$ points to the right
- y points up
> -z into the screen (i.e., z points out of the screen)
- Objects to look at are in front of us, i.e., have negative $z$ values
- But objects are still in 3D
- Next step: project scene to 2D plane

