CSE 167:

Introduction to Computer Graphics Lecture #3: Vertex Transformation

Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016

Announcements

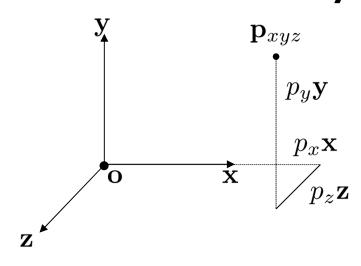
- Project I due Friday at 2pm
 - ▶ Grading window is 2-3:30pm
 - Upload source code to TritonEd by 2pm

Lecture Overview

- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Coordinate System

- Given point **p** in homogeneous coordinates: $\begin{bmatrix} p_y \\ p_z \\ 1 \end{bmatrix}$
- Coordinates describe the point's 3D position in a coordinate system with basis vectors x, y, z and origin o:

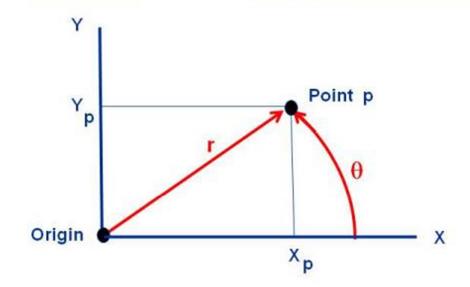


$$\mathbf{p}_{xyz} = p_x \mathbf{x} + p_y \mathbf{y} + p_z \mathbf{z} + \mathbf{o}$$

Rectangular and Polar Coordinates

National Aeronautics and Space Administration

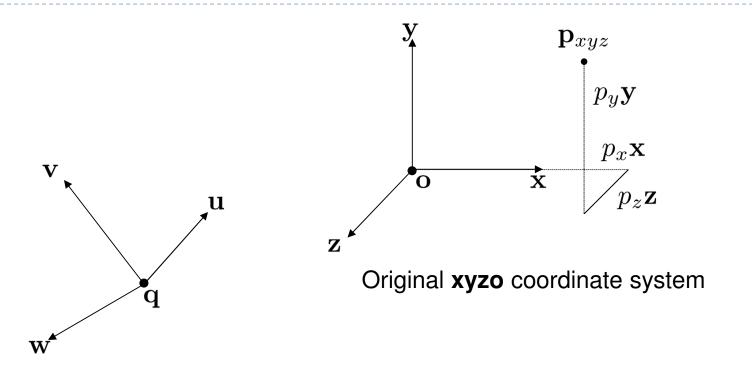
Rectangular and Polar Coordinates



Point p can be located relative to the origin by Rectangular Coordinates (X_p , Y_p) or by Polar Coordinates (r, θ)

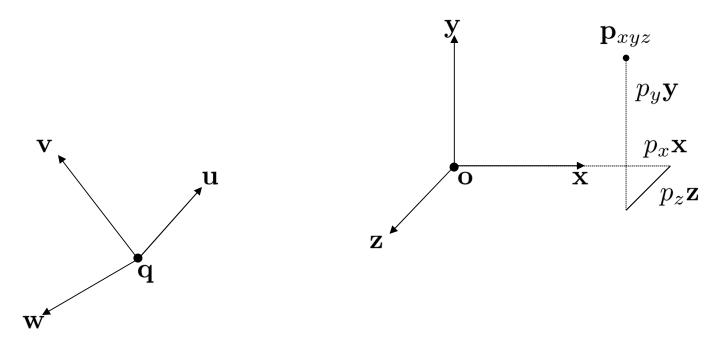
$$X_p = r \cos(\theta)$$
 $r = \operatorname{sqrt}(X_p^2 + Y_p^2)$
 $Y_p = r \sin(\theta)$ $\theta = \tan^{-1}(Y_p / X_p)$

www.nasa.gov at



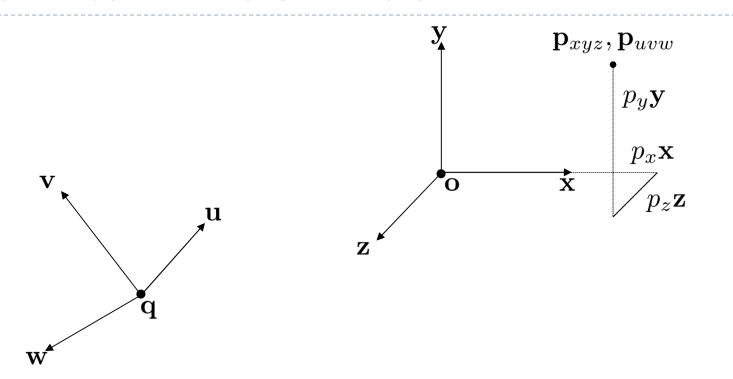
New **uvwq** coordinate system

Goal: Find coordinates of \mathbf{p}_{xyz} in new \mathbf{uvwq} coordinate system



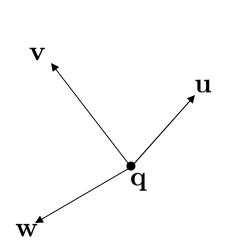
Express coordinates of xyzo reference frame with respect to uvwq reference frame:

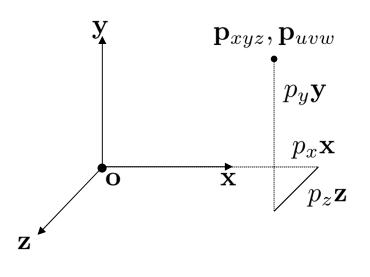
$$\mathbf{x} = \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} \qquad \mathbf{o} = \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix}$$



Point p expressed in new uvwq reference frame:

$$\mathbf{p}_{uvw} = p_x \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} + p_y \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} + p_z \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} + \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix}$$





$$\mathbf{p}_{uvw} = \begin{bmatrix} x_u & y_u & z_u & o_u \\ x_v & y_v & z_v & o_v \\ x_w & y_w & z_w & o_w \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} & \mathbf{o} \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

Inverse transformation

- ▶ Given point **P**_{uvw} w.r.t. reference frame **uvwq**:
 - ightharpoonup Coordinates P_{xyz} w.r.t. reference frame xyzo are calculated as:

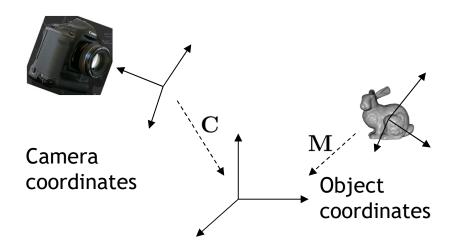
$$\mathbf{p}_{xyz} = \left[egin{array}{cccc} x_u & y_u & z_u & o_u \ x_v & y_v & z_v & o_v \ x_w & y_w & z_w & o_w \ 0 & 0 & 0 & 1 \end{array}
ight]^{-1} \left[egin{array}{c} p_u \ p_v \ p_w \ 1 \end{array}
ight]$$

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Typical Coordinate Systems

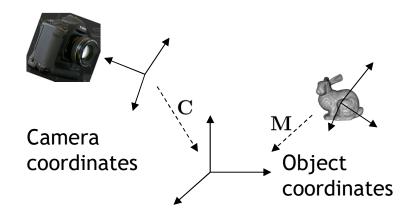
- In computer graphics, we typically use at least three coordinate systems:
 - World coordinate system
 - Camera coordinate system
 - Object coordinate system



World coordinates

World Coordinates

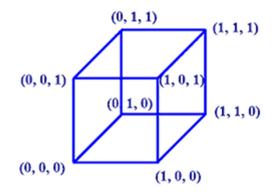
- ▶ Common reference frame for all objects in the scene
- No standard for coordinate system orientation
 - If there is a ground plane, usually x/y is horizontal and z points up (height)
 - Dtherwise, x/y is often screen plane, z points out of the screen



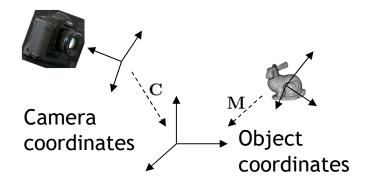
World coordinates

Object Coordinates

- Local coordinates in which points and other object geometry are given
- Often origin is in geometric center, on the base, or in a corner of the object
 - Depends on how object is generated or used.



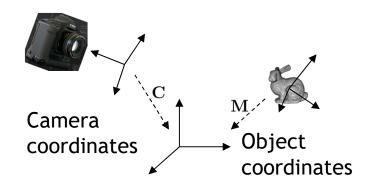
Source: http://motivate.maths.org



World coordinates

Object Transformation

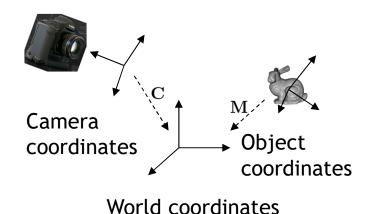
- The transformation from object to world coordinates is different for each object.
- Defines placement of object in scene.
- ▶ Given by "model matrix" (model-to-world transformation) M.



World coordinates

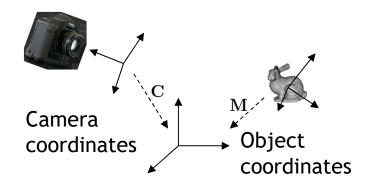
Camera Coordinate System

- Origin defines center of projection of camera
- x-y plane is parallel to image plane
- > z-axis is perpendicular to image plane



Camera Coordinate System

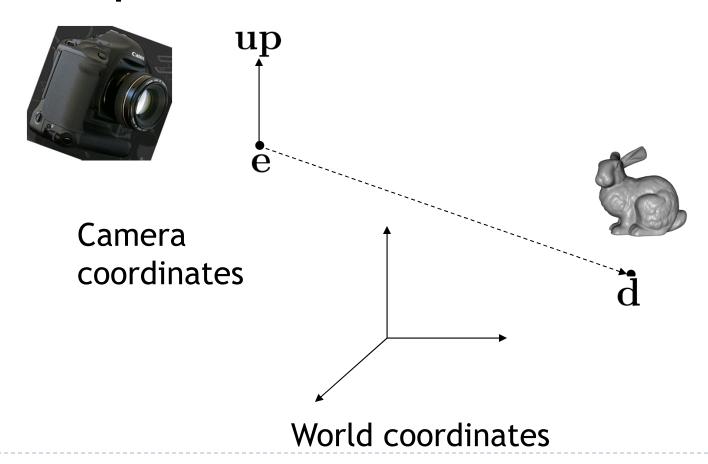
- ▶ The Camera Matrix defines the transformation from camera to world coordinates
 - Placement of camera in world



World coordinates

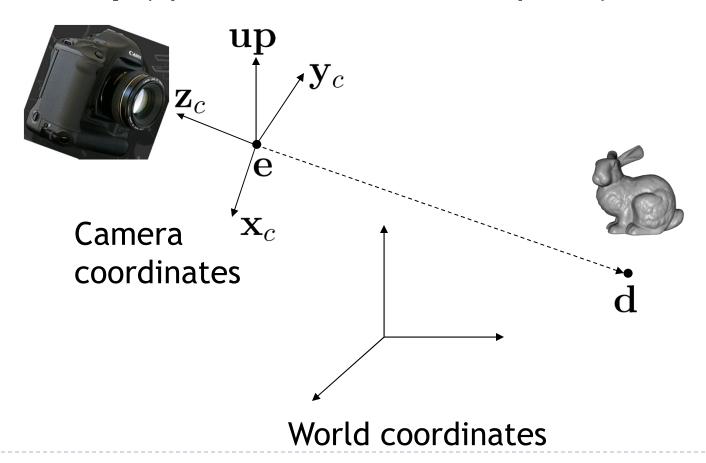
Camera Matrix

Construct from center of projection e, look at d, up-vector up:



Camera Matrix

Construct from center of projection **e**, look at **d**, upvector **up** (up in camera coordinate system):



Camera Matrix

z-axis

$$\mathbf{z}_C = \frac{\mathbf{e} - \mathbf{d}}{\|\mathbf{e} - \mathbf{d}\|}$$

x-axis

$$\boldsymbol{x}_C = \frac{\boldsymbol{u}\boldsymbol{p} \times \boldsymbol{z}_C}{\|\boldsymbol{u}\boldsymbol{p} \times \boldsymbol{z}_C\|}$$

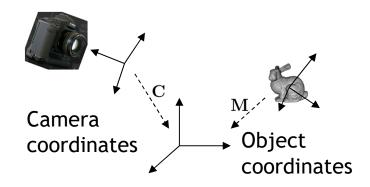
y-axis

$$y_C = z_C \times x_C = \frac{up}{\|up\|}$$

$$\boldsymbol{C} = \begin{bmatrix} \boldsymbol{x}_C & \boldsymbol{y}_C & \boldsymbol{z}_C & \boldsymbol{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transforming Object to Camera Coordinates

- Object to world coordinates: M
- Camera to world coordinates: C
- Point to transform: p
- ▶ Resulting transformation equation: p' = C⁻¹ M p



World coordinates

Tips for Notation

- Indicate coordinate systems with every point or matrix
 - Point: **p**_{object}
 - ► Matrix: M_{object→world}
- ▶ Resulting transformation equation:

$$\mathbf{p}_{camera} = (\mathbf{C}_{camera \rightarrow world})^{-1} \mathbf{M}_{object \rightarrow world} \mathbf{p}_{object}$$

- Helpful hint: in source code use consistent names
 - Point:p_object or p_obj or p_o
 - Matrix: object2world or obj2wld or o2w
- Resulting transformation equation:

```
wld2cam = inverse(cam2wld);
p_cam = p_obj * obj2wld * wld2cam;
```

Inverse of Camera Matrix

- ▶ How to calculate the inverse of the camera matrix C⁻¹?
- Generic matrix inversion is complex and computeintensive
- Solution: affine transformation matrices can be inverted more easily
- Observation:
 - Camera matrix consists of translation and rotation: T x R
- ▶ Inverse of rotation: $\mathbf{R}^{-1} = \mathbf{R}^{\mathsf{T}}$
- Inverse of translation: $\mathbf{T}(t)^{-1} = \mathbf{T}(-t)$
- Inverse of camera matrix: $C^{-1} = R^{-1} \times T^{-1}$

Objects in Camera Coordinates

- We have things lined up the way we like them on screen
 - **x** to the right
 - **y** up
 - -z into the screen
 - Dbjects to look at are in front of us, i.e. have negative z values
- But objects are still in 3D
- Next step: project scene to 2D plane

Lecture Overview

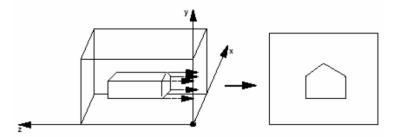
- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Projection

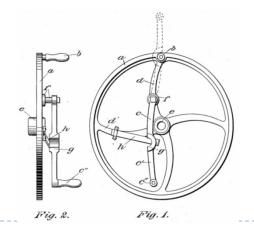
- Goal:
 Given 3D points (vertices) in camera coordinates,
 determine corresponding image coordinates
- Transforming 3D points into 2D is called Projection
- OpenGL supports two types of projection:
 - Orthographic Projection (=Parallel Projection)
 - Perspective Projection

Orthographic Projection

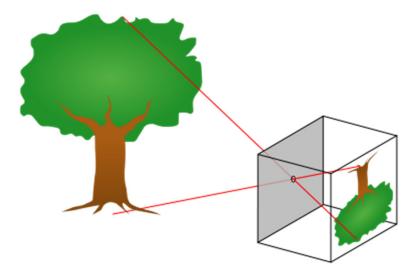
- ▶ Can be done by ignoring z-coordinate
 - Use camera space xy coordinates as image coordinates
- Project points to x-y plane along parallel lines



Often used in graphical illustrations, architecture, 3D modeling



- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)

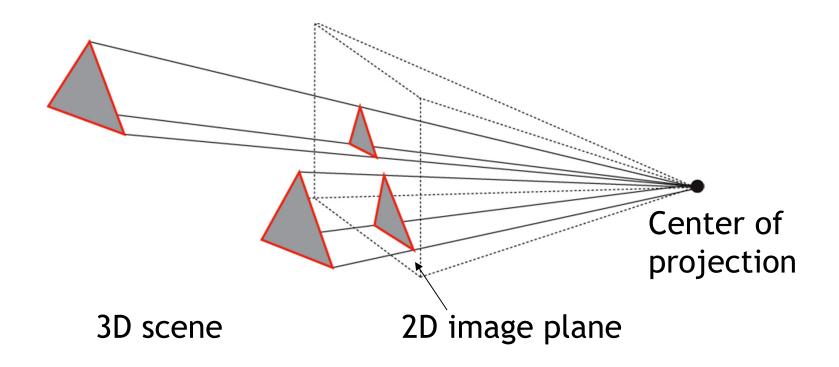


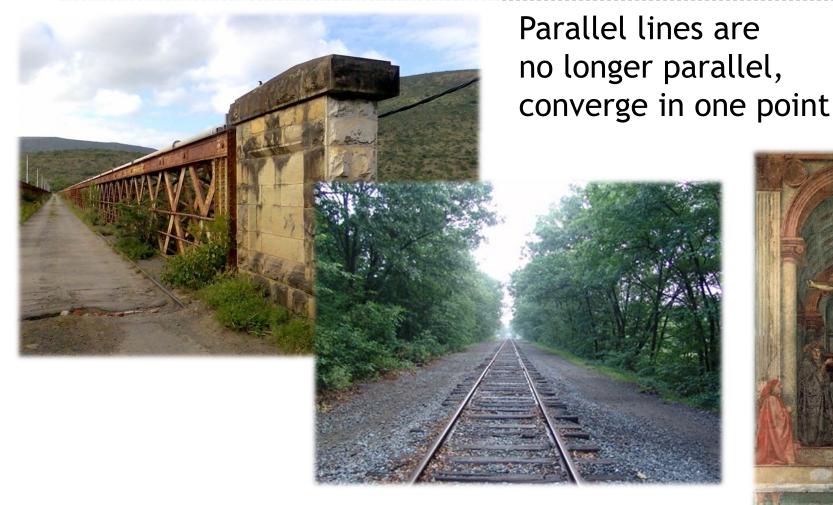
- Things farther away appear to be smaller
- Discovery attributed to Filippo Brunelleschi (Italian architect) in the early 1400's

Pinhole Camera

▶ San Diego, May 20th, 2012

Project along rays that converge in center of projection





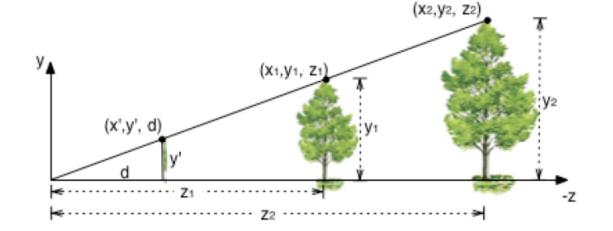
From law of ratios in similar triangles follows:

$$\frac{y'}{d} = \frac{y_1}{z_1} \Rightarrow y' = \frac{y_1 d}{z_1}$$
Similarly:
$$x' = \frac{x_1 d}{z_1}$$
Image plane

By definition: z' = d

We can express this using homogeneous coordinates and 4x4 matrices as follows

$$x' = \frac{x_1 d}{z_1}$$
$$y' = \frac{y_1 d}{z_1}$$



$$z' = d$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow \begin{bmatrix} xd/z \\ yd/z \\ d \end{bmatrix}$$

Projection matrix Homogeneous division

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} xd/z \\ yd/z \\ d \\ 1 \end{bmatrix}$$

Projection matrix P

- Using projection matrix, homogeneous division seems more complicated than just multiplying all coordinates by d/z, so why do it?
- It will allow us to:
 - Handle different types of projections in a unified way
 - Define arbitrary view volumes

Lecture Overview

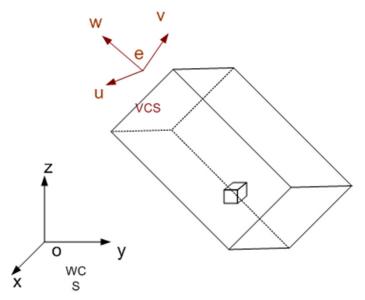
- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling

View Volumes

View volume = 3D volume seen by camera

Orthographic view volume

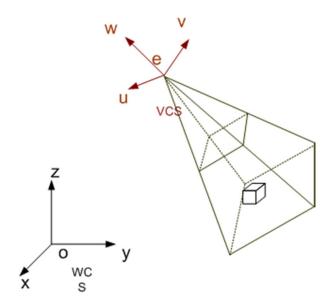
Camera coordinates



World coordinates

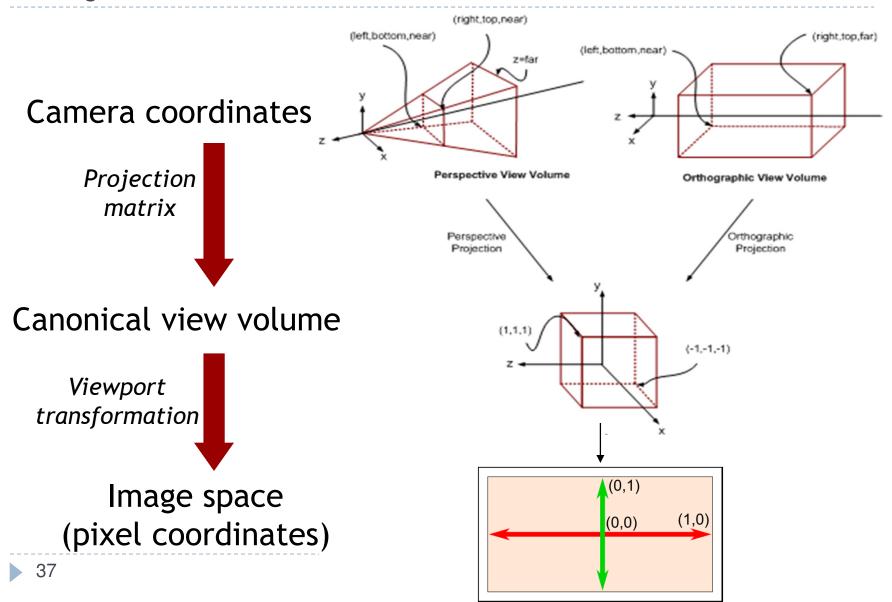
Perspective view volume

Camera coordinates

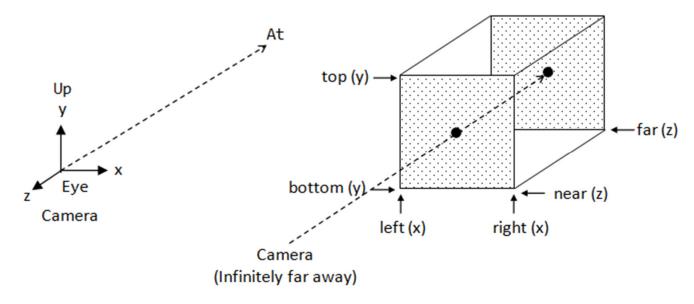


World coordinates

Projection Matrix

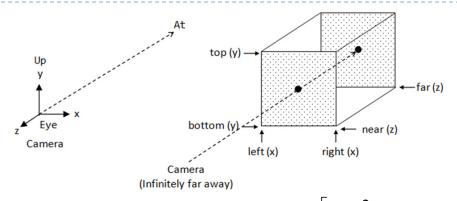


Orthographic View Volume



- Specified by 6 parameters:
 - Right, left, top, bottom, near, far
- Or, if symmetrical:
 - Width, height, near, far

Orthographic Projection Matrix



 $\mathbf{P}_{artho}(right, left, top, bottom, near, far) =$

In OpenGL:

glOrtho(left, right, bottom, top, near, far)

$$\begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{far - near} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

0

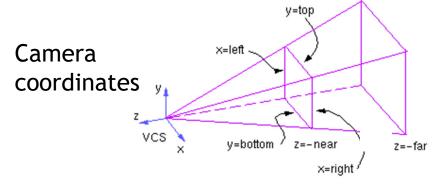
$$\mathbf{P}_{ortho}(width, height, near, far) = \begin{bmatrix} \frac{2}{width} & 0 & 0 & 0 \\ 0 & \frac{2}{height} & 0 & 0 \\ 0 & 0 & \frac{2}{far - near} & \frac{far + near}{far - near} \end{bmatrix}$$

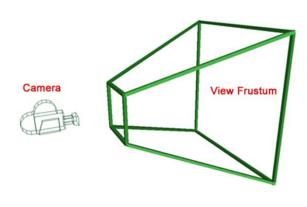
0

No equivalent in OpenGL

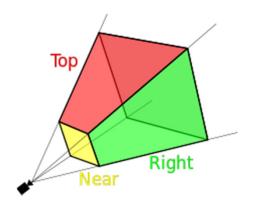
Perspective View Volume

General view volume



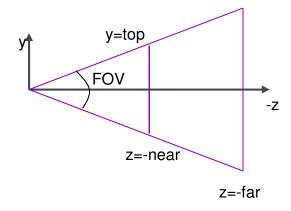


- Defined by 6 parameters, in camera coordinates
 - Left, right, top, bottom boundaries
 - Near, far clipping planes
- Clipping planes to avoid numerical problems
 - Divide by zero
 - Low precision for distant objects
- Usually symmetric, i.e., left=-right, top=-bottom



Perspective View Volume

Symmetrical view volume



Only 4 parameters

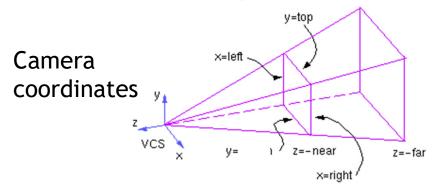
- Vertical field of view (FOV)
- Image aspect ratio (width/height)
- Near, far clipping planes

aspect ratio=
$$\frac{right - left}{top - bottom} = \frac{right}{top}$$

$$\tan(FOV/2) = \frac{top}{near}$$

Perspective Projection Matrix

▶ General view frustum with 6 parameters



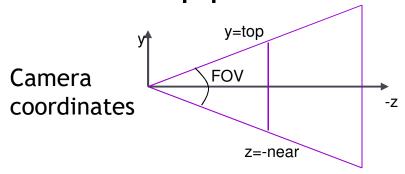
 $\mathbf{P}_{persp}(left, right, top, bottom, near, far) =$

$$\begin{bmatrix} \frac{2near}{right-left} & 0 & \frac{right+left}{right-left} & 0 \\ 0 & \frac{2near}{top-bottom} & \frac{top+bottom}{top-bottom} & 0 \\ 0 & 0 & \frac{-(far+near)}{far-near} & \frac{-2far\cdot near}{far-near} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

In OpenGL: glFrustum(left, right, bottom, top, near, far)

Perspective Projection Matrix

Symmetrical view frustum with field of view, aspect ratio, near and far clip planes



$$\mathbf{P}_{persp}(FOV, aspect, near, far) = \begin{bmatrix} \frac{1}{aspect \cdot \tan(FOV/2)} & 0 & 0 & 0 \\ 0 & \frac{1}{\tan(FOV/2)} & 0 & 0 \\ 0 & 0 & \frac{near + far}{near - far} & \frac{2 \cdot near \cdot far}{near - far} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

In OpenGL:

gluPerspective(fov, aspect, near, far)

Canonical View Volume

- ▶ Goal: create projection matrix so that
 - User defined view volume is transformed into canonical view volume: cube [-1,1]x[-1,1]x[-1,1]
 - Multiplying corner vertices of view volume by projection matrix and performing homogeneous divide yields corners of canonical view volume
- Perspective and orthographic projection are treated the same way
- Canonical view volume is last stage in which coordinates are in 3D
 - Next step is projection to 2D frame buffer

Viewport Transformation

- After applying projection matrix, scene points are in normalized viewing coordinates
 - ▶ Per definition within range [-1..1] x [-1..1] x [-1..1]
- Next is projection from 3D to 2D (not reversible)
- Normalized viewing coordinates can be mapped to image (=pixel=frame buffer) coordinates
 - Range depends on window (view port) size: [x0...x1] x [y0...y1]
- Scale and translation required:

$$\mathbf{D}(x_0, x_1, y_0, y_1) = \begin{bmatrix} (x_1 - x_0)/2 & 0 & 0 & (x_0 + x_1)/2 \\ 0 & (y_1 - y_0)/2 & 0 & (y_0 + y_1)/2 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling

$$\mathbf{p}' = \mathbf{DPC}^{-1}\mathbf{M}\mathbf{p}$$
 Object space

- ▶ M: Object-to-world matrix
- C: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

$$\mathbf{p}' = \mathbf{DPC}^{-1} \mathbf{M} \mathbf{p}$$
Object space
World space

- ▶ M: Object-to-world matrix
- C: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

$$\mathbf{p'} = \mathbf{DP} \mathbf{C}^{-1} \mathbf{Mp}$$
Object space
World space
Camera space

- ▶ M: Object-to-world matrix
- **C**: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

$$\mathbf{p'} = \mathbf{D}\mathbf{P}\mathbf{C}^{-1}\mathbf{M}\mathbf{p}$$
Object space
World space
Camera space
Canonical view volume

- ▶ **M**: Object-to-world matrix
- **C**: camera matrix
- ▶ **P**: projection matrix
- **D**: viewport matrix

Mapping a 3D point in object coordinates to pixel coordinates: $\mathbf{p}' = \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$

' = DPC⁻¹Mp
Object space
World space
Camera space
Canonical view volume

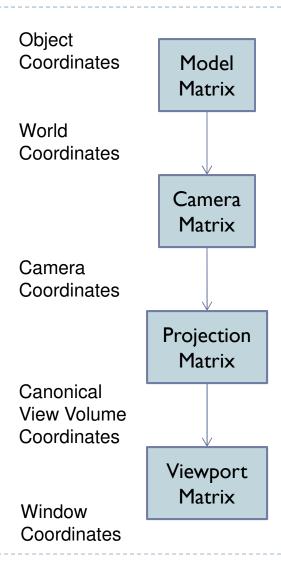
Image space

- ▶ M: Object-to-world matrix
- **C**: camera matrix
- ▶ **P**: projection matrix
- **D**: viewport matrix

$$\mathbf{p}' = \mathbf{DPC}^{-1}\mathbf{Mp}$$

$$\mathbf{p}' = \left[egin{array}{c} x' \ y' \ z' \ w' \end{array}
ight]$$
 Pixel coordinates: $x'/w' \ y'/w'$

- ▶ M: Object-to-world matrix
- **C**: camera matrix
- ▶ **P**: projection matrix
- **D**: viewport matrix



Complete Vertex Transformation in OpenGL

OpenGL GL_MODELVIEW matrix
$$\mathbf{p}' = \mathbf{D} \frac{\mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}}{\mathbf{p}}$$
 OpenGL GL_PROJECTION matrix

- ▶ **M**: Object-to-world matrix
- **C**: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

Complete Vertex Transformation in OpenGL

▶ GL_MODELVIEW, C-¹M

- Defined by the programmer.
- Think of the ModelView matrix as where you stand with the camera and the direction you point it.

▶ GL_PROJECTION, **P**

- Utility routines to set it by specifying view volume: glFrustum(), gluPerspective(), glOrtho()
- Think of the projection matrix as describing the attributes of your camera, such as field of view, focal length, etc.

Viewport, D

- Specify implicitly via glViewport()
- No direct access with equivalent to GL_MODELVIEW or GL_PROJECTION