CSE 165: 3D User Interaction

Lecture #15: 3D UI Design

Announcements

- Blog update #2 due Sunday night
 - Need more than just screen shots see project description
- Final project video due 3/22 at 2pm
- Final project presentations on March 22
 - 3-4pm: videos in 1242
 - 4-5pm: demos part 1
 - 5-6pm: demos part 2

3D UI Design Strategies

Thus far...

- We covered universal 3D UI tasks
 - Selection
 - Manipulation
 - Navigation
 - System control
 - Symbolic input

But: The combination of techniques and devices alone does not guarantee an **enjoyable** 3D UI experience!

3D UI Design – Designing for Humans

- Microlevel: implementation
 - 3D interaction programming: hard!
 - Testing: difficult and hard to automate
 - Tweaking UI parameters: important but time consuming
- Macrolevel: guidelines
 - Strengths and limitations of human psychology/physiology
 - Common sense
 - Example: people naturally use 2 hands, so using 2 hands in a 3D UI might improve usability/performance

Designing for Humans - Feedback

- Feedback is critical to usable 3D interfaces
 - User feedback is any information conveyed to the user to help understand
 - system state
 - result of operation
 - status of task
- Feedback control mechanism
 - Example: turning a knob produces feedback by
 - external sources: the knob
 - internal sources: user's body
- Want to have appropriate feedback levels
- Ensure compliance (agreement) between different levels/types of feedback

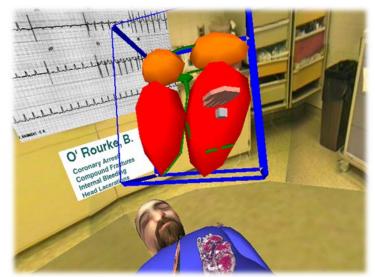
Designing for Humans - Compliance

- Compliance is the main principle in design feedback
- Want different feedback dimensions to be synchronized
 - Maintain spatial and temporal correspondence between multiple feedback dimensions
- Feedback displacement is to be avoided
 - Example: hand and virtual object move in different directions

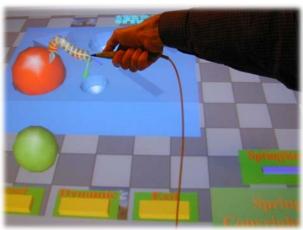
Designing for Humans – Spatial Compliance

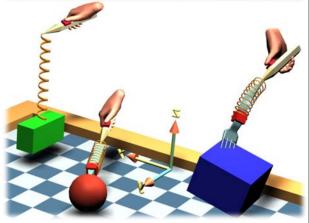
- Directional compliance virtual object should move in the same direction as manipulated by input device
- Nulling compliance when user returns device to initial pose, virtual object returns to corresponding initial pose
- Instrumental and operational feedback also require spatial compliance
 - Example: real and virtual hand should be aligned

Designing for Humans – Temporal Compliance


- Latency typical problem
 - Temporal delay between user input and sensory feedback
- Variable latency can be even more problematic
- Solutions?
 - Reduce scene complexity
 - Faster hardware
 - Predictive tracking

Designing for Humans – Feedback in Multiple Dimensions


- Sensory dimensions
 - Visual, auditory, tactile, olfactory
 - Proprioceptive: position relative to the body
 - Kinesthetic: bodily motion
- Want to try to give multi-dimensional feedback
 - Can be difficult due to technology limitations (eg, haptic feedback still in early stages)
 - Sensory feedback substitution
 - Example: visual/audio cues compensate for missing haptic feedback


Designing for Humans – Feedback Substitution

- Cannot always support all sensory feedback dimensions
- Typical approach is to substitute

Highlighting object about to be selected

Spring Manipulation Tools, Michal Koutek, TU Delft

Designing for Humans – Passive Haptics

- Match shape and appearance of virtual object with physical prop
 - User both sees and feels
- Advantage
 - Inexpensive haptic/tactile feedback
- Disadvantage
 - Scalability: all users need physical prop

Designing for Humans – Constraints

- Constraints:
 - Are a relation between variables that must be satisfied
 - Example: a line should stay horizontal
 - Define geometrical coherence of scene
 - Can make interaction simpler and improve accuracy

Designing for Humans – Constraint Types

- Physically realistic constraints
 - Collision detection and avoidance
 - Gravity
- DOF reduction
 - Simplify interaction (example: constrain travel to ground)
- Dynamic alignment tools
 - Grids and snapping, guiding surfaces
- Intelligent constraints
 - Example: lamp can only stand on horizontal surfaces

Designing for Humans – Two Handed Control

- A.k.a. bimanual input
- Transfer everyday manipulation experiences to 3D UI
- Can increase user performance on certain tasks

Designing for Humans – Guiard's Framework

- Tasks are
 - Unimanual: throwing darts
 - Bimanual symmetric
 - Synchronous: pulling a rope
 - Asynchronous: typing on keyboard
 - Bimanual asymmetric (cooperative): holding a cell phone with one hand, operating it with the other
- Division of labor (hand roles) for asymmetric scenario:
 - Nondominant hand dynamically adjusts spatial frame of reference for dominant hand
 - Dominant hand produces precision movements, nondominant hand performs gross manipulation

Designing for Different User Groups

- Age
- Prior 3D UI experience
- Physical characteristics: arm length, etc.
- Perceptual, cognitive, motor capabilities
 - Color recognition
 - Stereo vision
 - Spatial abilities

Designing for User Comfort

- Weight of equipment
- Keep users in proper physical space
- Hygiene and public installations
- Keep sessions short (30-45min max) to prevent sickness, fatigue

3D Uls of the Future

Discussion Topics

- What is feasible today?
 - How could you implement it?
 - Hardware
 - Algorithms
- What is not feasible today but probably will be soon?
- What may never be feasible?

Iron Man 2

• https://www.youtube.com/watch?v=YAXsZphpiu8

A Day Made of Glass 2017

https://www.youtube.com/watch?v=4UX0tGiWiYg

Microsoft's Concept of 2019

http://www.youtube.com/watch?v=bwj2s_5e12U

