Announcements

- **Sunday, December 6\(^{th}\) at 11:59pm:**
 - Homework Project 3 late deadline

- **Next Wednesday, December 9\(^{th}\) at 1pm:**
 - Discussion Project 4 and Final Exam

- **Sunday, December 13\(^{th}\) at 11:59pm:**
 - Homework Project 4 due

- **Thursday, December 17\(^{th}\) 2:30pm until Dec 18\(^{th}\) 2:30pm**
 - Final Exam
 - Timed 3-hour Canvas quiz, to be taken within 24h

- **Sunday, December 20th\(^{th}\) at 11:59pm:**
 - Homework Project 4 late deadline
Bump Mapping with Normal Maps
Consider Modeling an Orange

- Start with an orange-colored sphere
 - Too simple
- Replace sphere with a more complex shape
 - Does not capture surface characteristics (small dimples)
 - Takes too many polygons to model all the dimples
Texture Mapped Orange

- Take a picture of a real orange
- “Paste” pixels of the image onto simple geometric model
 - This process is known as texture mapping
- Still might be problematic…
 - Looking at the orange in a rendered scene: shading of dimples won’t match lighting environment
Bump Mapped Orange

Use an image that specifies the normal to use to render the surface

- This way, can render a “bumpy” surface during shading without subdividing the surface into lots of tiny triangles
Three Types of Mapping

- **Texture Mapping**
 - Paste images onto polygons

- **Environment Mapping**
 - Uses a picture of the environment for texture maps
 - Allows simulation of mirror-like surfaces

- **Bump mapping**
 - Alters normal vectors during the rendering process
 - Generates bumpy looking surfaces
Surface Shading

- Consider the lighting for a modeled surface.
Surface Shading

- We can model this as deviations from some base surface.
- The question is then how these deviations change the lighting.
Bump Mapping

<table>
<thead>
<tr>
<th>Flat shading</th>
<th>Gouraud shading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Only the first normal of the triangle is used to compute lighting in the entire triangle.</td>
<td>The light intensity is computed at each vertex and interpolated across the surface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phong shading</th>
<th>Bump mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals are interpolated across the surface, and the light is computed at each fragment.</td>
<td>Normals are stored in a bumpmap texture, and used instead of Phong normals.</td>
</tr>
</tbody>
</table>
Bump Mapping with Normal Maps

Notice: The geometry is unchanged. There’s the same number of vertices and triangles. This effect is entirely from the normal map.
Normal Maps

Each pixel represents a normal vector relative to the surface at that point. -1 to 1 range is mapped to 0 to 1 for the texture so normals become colors.

→ Inverse of Normal Coloring
Normal Map Operation

For each pixel, determine the normal from a texture image. Use that to compute the color.
Normal Map

- Normal vector encoded as rgb
 - $[-1,1]^3 \rightarrow [0,1]^3$: rgb = $n \times 0.5 + 0.5$

- RGB decoding in fragment shaders
 - `vec3 n = texture2D(NormalMap, texcoord.st).xyz * 2.0 - 1.0`

- Normal maps typically map direction out of image to +z
 - Hence RGB color for the straight up normal is (0.5, 0.5, 1.0).
 - This is why normal maps are mostly a light blue color

- Normals are then used for shading computation
 - Diffuse: $n \cdot l$
 - Specular: $(n \cdot h)^{\text{shininess}}$
Normal Mapping Example

original mesh
4M triangles

simplified mesh
500 triangles

simplified mesh
and normal mapping
500 triangles
Normal Mapping

Bump Mapping:
Perturbing mesh normals to create the appearance of geometric detail

Normal Mapping:
A way of implementing bump mapping
What's Missing?

- There are no bumps on the silhouette of a bump or normal-mapped object

→ Displacement Mapping can model that (not covered in CSE 167)