
CSE 167:
Introduction to Computer Graphics
Lecture #3: Linear Algebra

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2019



Announcements
 Tomorrow: homework 1 due at 2pm
 Upload to Canvas
 Grading in CSE basement labs (primarily 260 and 270)
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Overview
 Vectors and matrices
 Affine transformations
 Homogeneous coordinates
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Vectors
 Give direction and length in 3D
 Vectors can describe
 Difference between two 3D points
 Speed of an object
 Surface normals (directions perpendicular to surfaces)

Surface normals Surface

Normal vector
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Vector arithmetic using coordinates

a =
ax

ay

az

















b =
bx

by

bz

















a + b =
ax + bx

ay + by

az + bz

















a − b =
ax − bx

ay − by

az − bz

















sa =
sax

say

saz

















−a =
−ax

−ay

−az

















where s is a scalar
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Vector Magnitude
 The magnitude (length) of a vector is:

 A vector with length of 1.0 is called unit vector
 We can also normalize a vector to make it a unit 

vector

 Unit vectors are often used as surface normals

v 2 = vx
2 + vy

2 + vz
2

v = vx
2 + vy

2 + vz
2

v
v
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Dot Product

a ⋅b = aibi∑
a ⋅b = axbx + ayby + azbz

a ⋅b = a b cosθ
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a

b

a ⋅b = a b cosθ

cosθ =
a ⋅b
a b








θ = cos−1 a ⋅b
a b








Angle Between Two Vectors
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Dot Product: Interpretation
 If a and b are perpendicular, the result of the dot product 

will be zero.

 If the angle between a and b is less than 90 degrees, the 
dot product will be positive (greater than zero).

 If the angle between a and b is greater than 90 degrees, 
the dot product will be negative (less than zero)

9



area of parallelogram ab

if a and b are parallel
(or one or both degenerate)

a × b

a × b = a b sinθ
a × b =

a × b = 0

Cross Product
is a vector perpendicular to both a
and b, in the direction defined by 
the right hand rule
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Cross Product
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𝑎𝑎 × 𝑏𝑏 =
𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧

×
𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧

=
𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦
𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧
𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥



𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧

×
𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧

=
𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦
𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧
𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥

𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧

×
𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧

=
𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦
𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧
𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥

Cross Product Calculation
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𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧

×
𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧

=
𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦
𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧
𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥



Matrices
 Rectangular array of numbers

 Square matrix if m = n
 In graphics almost always: m = n = 3; m = n = 4
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Matrix Addition
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Multiplication With Scalar
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Matrix Multiplication
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Matrix-Vector Multiplication
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Identity Matrix
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Matrix Inverse

If a square matrix M is non-singular, there exists a unique 
inverse M-1 such that
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Overview
 Vectors and matrices
 Affine transformations
 Homogeneous coordinates
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Affine Transformations
 Most important for graphics: 
 rotation, translation, scaling

 Wolfram MathWorld:
 An affine transformation is any transformation that 

preserves collinearity (i.e., all points lying on a line initially still 
lie on a line after transformation) and ratios of distances 
(e.g., the midpoint of a line segment remains the midpoint after 
transformation).

 Implemented using matrix multiplications
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Uniform Scale

 Uniform scale matrix in 2D

 Analogous in 3D:
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𝑠𝑠 0 0
0 𝑠𝑠 0
0 0 𝑠𝑠



Non-Uniform Scale

 Nonuniform scaling matrix in 2D
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Non-Uniform Scale in 3D

 Scale in 2D: 𝑠𝑠 0
0 𝑡𝑡

 Analogous in 3D:
𝑠𝑠 0 0
0 𝑡𝑡 0
0 0 𝑢𝑢
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Rotation in 2D
 Convention: positive angle rotates counterclockwise
 Rotation matrix
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Rotation in 3D
Rotation around coordinate axes

26



Rotation in 3D
 Concatenation of rotations around x, y, z axes

 are called Euler angles
 Result depends on matrix order!
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Rotation about an Arbitrary Axis
 Complicated!
 Rotate point [x,y,z] about axis [u,v,w] by angle θ:
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How to rotate around a Pivot Point?

Rotation around 
origin:
p’ = R p

Rotation around 
pivot point:
p’ = ?
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Rotating point p around a pivot point

1. Translation T 2. Rotation R 3. Translation T-1
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p’ = T-1 R T p



Concatenating transformations
 Given a sequence of transformations M3M2M1

 Note: associativity applies
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Overview
 Vectors and matrices
 Affine transformations
 Homogeneous coordinates
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Translation
 Translation in 2D

 Translation matrix T=?
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tx

ty

𝑣𝑣′ =
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦 +

𝑡𝑡𝑥𝑥
𝑡𝑡𝑦𝑦 = 𝑇𝑇𝑣𝑣 = 𝑇𝑇

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦 = ? ?

? ?
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦



Translation
 Translation in 2D: 3x3 matrix

 Analogous in 3D: 4x4 matrix
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Homogeneous Coordinates

 Basic: a trick to unify/simplify computations.

 Deeper: projective geometry
 Interesting mathematical properties
 Good to know, but less immediately practical
 We will use some aspect of this when we do perspective 

projection
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Homogeneous Coordinates
 Allows us to unify affine transformation calculations.
 Add an extra component. 1 for a point, 0 for a vector:

 Combine M and d into single 4x4 matrix:

 Let’s see what happens when we multiply now…



p =

px

py

pz

1



















        v =

vx

vy

vz

0



















mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1
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Homogeneous Point Transform
 Transform a point:

 Top three rows are the affine transform!
 Bottom row stays 1



′px

′py

′pz

1



















 =

mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1



















px

py

pz

1



















=

mxx px + mxy py + mxz pz + dx

myx px + myy py + myz pz + dy

mzx px + mzy py + mzz pz + dz

0 + 0 + 0 +1



















                                                         M
px

py

pz
















    +    


d
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Homogeneous Vector Transform
 Transform a vector:

 Top three rows are the linear transform
 Displacement d is properly ignored

 Bottom row stays 0

′vx

′vy

′vz

0



















 =

mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1



















vx

vy

vz

0



















=

mxxvx + mxyvy + mxzvz + 0
myxvx + myyvy + myzvz + 0
mzxvx + mzyvy + mzzvz + 0

0 + 0 + 0 + 0



















                                                           M
vx

vy

vz
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Homogeneous Arithmetic

 Correct operations always end in 0 or 1



vector+vector:       


0







 +



0







 ⇒



0









vector-vector:       


0







 −



0







 ⇒



0









scalar*vector:               s


0







 ⇒



0









point+vector:         


1







 +



0







 ⇒



1









point-point:         


1







 −



1







 ⇒



0









point+point:        


1







 +



1







 ⇒



2









scalar*point:                s


1







 ⇒



s









weighted average
affine combination








 of points:   1
3


1







 +

2
3


1







 ⇒



1
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Homogeneous Transforms
 Rotation, Scale, and Translation of points and vectors 

unified in a single matrix transformation:

 Matrix has the form:
 Last row always 0,0,0,1

 Transforms can be composed by matrix multiplication
 Same caveat: order of operations is important
 Same note: transforms operate right-to-left

mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1



















′p = M p



4x4 Scale Matrix

 Generic form:

𝑠𝑠 0 0 0
0 𝑡𝑡 0 0
0 0 𝑢𝑢 0
0 0 0 1

 Inverse:

1
𝑠𝑠 0 0 0
0 1

𝑡𝑡 0 0
0 0 1

𝑢𝑢 0
0 0 0 1
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4x4 Rotation Matrix

 Generic form:

𝑟𝑟1 𝑟𝑟2 𝑟𝑟3 0
𝑟𝑟4 𝑟𝑟5 𝑟𝑟6 0
𝑟𝑟7 𝑟𝑟8 𝑟𝑟9 0
0 0 0 1

 Inverse:

𝑟𝑟1 𝑟𝑟4 𝑟𝑟7 0
𝑟𝑟2 𝑟𝑟5 𝑟𝑟8 0
𝑟𝑟3 𝑟𝑟6 𝑟𝑟9 0
0 0 0 1
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4x4 Translation Matrix

 Generic form:

1 0 0 𝑡𝑡𝑥𝑥
0 1 0 𝑡𝑡𝑦𝑦
0 0 1 𝑡𝑡𝑧𝑧
0 0 0 1

 Inverse:

1 0 0 −𝑡𝑡𝑥𝑥
0 1 0 −𝑡𝑡𝑦𝑦
0 0 1 −𝑡𝑡𝑧𝑧
0 0 0 1
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