
CSE 190
Discussion 3

PA2: Level of Immersion

Agenda

● Project 2 Overview

● Initial parts of PA2:

○ Rendering a 3D skybox

○ Varying cube sizes

○ Viewing Modes

○ Tracking Modes

Project 2 Overview

● Project 2 Due: May 3rd 2pm
○ If you have scheduling conflicts, let us know

● Given features in Project 2 Starter Code
○ 2 textured cubes

○ Monoscopic skybox

● Features you need to implement:
○ Render a skybox in stereo

○ Change the rendering settings

○ More specifications in the assignment page.

http://ivl.calit2.net/wiki/index.php/Project2S19
https://github.com/WeichenLiu/MinimalVR

Getting Started

● Added files:
○ TexturedCube.h/cpp:

■ Loads in the ppm files and textures a cube object
○ SkyBox.h/cpp:

■ Derived class of textured cube
○ skybox.vert/frag

■ Shader to render the skybox and textured cubes
● Added/changed class:

○ Scene Class (was Color Cube Scene)

Getting Started

Option 1:
● Clone again and re-factor

Option 2:
● Copy over the additional files (h/cpp and cube/skybox folders)
● Make new Scene class and copy over the scene class in the main.cpp
● Make new h/cpp file for your Proj2 (a new ExampleApp file)

Render Skybox in 3D

● Left eye skybox in repository
● Right eye skybox on project page
● You will need to differentiate which eye you are rendering to

○ Check the eye type
■ Based on that eye type

(ovrEye_left vs ovrEye_right)

render the appropriate

skybox

○ Starter code renders as a 10m cube

surrounding the user, so the

physical placement may need to

have a horizontal offset.

Viewing Modes

● Want to see the effects of monoscopic vs stereo vision so need to
implement different viewing modes:
○ Stereo Vision
○ Mono
○ Left/Right eye only
○ Inverted Stereo

● Look through the render/draw functions to find where we are drawing

each eye

Left eye Only and Right eye Only

● Only render if it is the correct eye, otherwise just skip the
rendering step

Inverted Stereo

● Simply swap which eye pose each eye uses to render
○ Still check ovrEye_left and ovrEye_right

Button Interaction

void update() final override {
ovrInputState inputState;
if (OVR_SUCCESS(ovr_GetInputState(_session, ovrControllerType_Touch, &inputState))){

if (inputState.HandTrigger[ovrHand_Right] > 0.5f)
std::cerr << "right middle trigger pressed" << std::endl;

if (inputState.IndexTrigger[ovrHand_Right] > 0.5f)
std::cerr << "right index trigger pressed" << std::endl;

if (inputState.HandTrigger[ovrHand_Left] > 0.5f)
std::cerr << "left middle trigger pressed" << std::endl;

if (inputState.IndexTrigger[ovrHand_Left] > 0.5f)
std::cerr << "left index trigger pressed" << std::endl;

if (inputState.Buttons>0)
std::cerr << "Botton state:" << inputState.Buttons << std::endl;

}
}

Vary Physical Size of Cubes

● Starter code has two 30cm cubes
● Need to be able to:

○ Change cube dimensions from 0.01m to 0.5m without changing the
position of their centers

○ Reset the size to 30cm

Tracking Modes

● What to play with the position/orientation of the HMD to see what the
effects are when loose either/both kinds of tracking

● Implement tracking modes
○ Regular
○ Orientation only
○ Position only
○ No tracking

QUESTIONS?

