
CSE 190 
VR Technologies

Spring 2021

Guowei Yang

Discussion 7



ANNOUNCEMENTS

● Homework 3 Deadline Extended for A WEEK

○ Due Sunday (5/23)

○ Come to Office Hours

● Homework 4 Released 

○ Due Sunday (5/30)

○ START EARLY



AGENDA

● Homework 4 Overview 

● Homework 4 Getting Started

● Homework 3 Q&A



Homework 4 Overview



Homework 4 Overview

● Simulate the CAVE (Cave Automatic Virtual 

Environment) in VR (A virtual environment within a virtual 

environment…?)

● Simulate the tracked user

● Simulate an observer



Homework 4 Overview - View Point Switch

● HMD View & Controller View

○ Able to switch from HMD view to Controller View 

■ HMD view: view point same as headset

■ Controller view: view point same as right controller

● Freeze View

○ Freeze the view point that is used to render to CAVE wall

● Debug View



Homework 4 
Getting Started



Homework 4 Getting Started: Create CAVE
● Create CAVE Room (Three 3D Planes)

○ Can use GameObject -> Plane



Render to CAVE Walls
● You need two pairs of cameras (each pair for left/right eyes)

○ One pair looks at the CAVE wall (OVRCameraRig)

○ The other pair serves as the view point to the virtual scene 

(Custom Camera Rig)

○ CAVE walls should be invisible to the custom rig

● Render the image from the view point (seen by the custom rig) to 

the CAVE walls use off-screen rendering

● Needs a custom material and a custom shader for the walls in 

order to display off-screen rendering images 



Render to CAVE Walls: Invisibility
● Don’t want the view point camera see the CAVE walls

● Set the Render Layer of the CAVE walls 



Render to CAVE Walls: Invisibility

● Set the render layer for the virtual scene objects 

● Set the Culling Mask for both pair of cameras

○ The CAVE-looking cameras should see all CAVE 

walls, but should not be able to see scene objects

(OVRCameraRig -> Culling Mask -> Exclude Scene)

○ The scene-looking cameras should NOT see any 

CAVE walls, but can see all scene objects

(CustomCameraRig -> Culling Mask -> Only Include 

Scene)



Render to CAVE Walls: Off Screen Rendering
● Need to render the view from the custom camera rig to 

the CAVE walls

● Need to create material with custom shader

● Modify the material shader from Homework 3 

(material.shader)



Render to CAVE Walls: Off Screen Rendering



Render to CAVE Walls: Off Screen Rendering

● This shader ensures that different set of images are rendered to the CAVE 

walls, corresponding to left and right eyes

● Create a new material and attach this shader 



Render to CAVE Walls: Off Screen Rendering
● Create two Render Textures for the material

○ Assets -> Create -> Render Texture

○ Create 2, one for left eye, one for right eye

● Select higher size for the texture (e.g. 1024x1024)

● Attach this material to all three CAVE planes



Render to CAVE Walls: Off Screen Rendering
● Download the Off-Screen Rendering Script

○ https://gist.github.com/danielbierwirth/10965844fecc38243007f0cd21843d90

● Create an empty GameObject, and attach the script to it 

● Set correct camera correspondences (remember to select the cameras 

from the custom camera rig, which looks to the scene)

https://gist.github.com/danielbierwirth/10965844fecc38243007f0cd21843d90


Render to CAVE Walls: Off Screen Rendering
● Set the scene-looking cameras’ target texture 

to the newly created textures

● Now you should be able to see something like 

this: 



Render to CAVE Walls: Off Screen Rendering



Render to CAVE Walls: Projections
● Reminder a typical projective matrix assumes we are right 

in front of the screen

● We need to be able to render off-center 



Render to CAVE Walls: Projections
● Review of the projection matrices



Render to CAVE Walls: ProjectionsRender to CAVE Walls: Projections - P
1. Calculate vectors from eye position to the screen corners

○ plane.GetComponent<Renderer>().bounds.max;

○ plane.GetComponent<Renderer>().bounds.min;

2. Calculate distance from eye position to screen space origin



Render to CAVE Walls: ProjectionsRender to CAVE Walls: Projections - P
3. Calculate the frustum extents at the near plane

● P = Matrix4x4.Frustum(float left, float right, float bottom, float 

top, float zNear, float zFar);

● Near and far define the near/far clipping plane
○ Depends on how you want to clip user’s view



Render to CAVE Walls: ProjectionsRender to CAVE Walls: Projections - M
● We want to transform the screens XY plane to be aligned with 

the viewer XY plane
● M: maps into screen coordinates
● Want to go from screen coordinates to viewer so we take the 

inverse of M and get M-1 = MT

● Note that Unity Matrix is COLUMN MAJOR



Render to CAVE Walls: ProjectionsRender to CAVE Walls: Projections - T

● Pe: Position of scene-looking camera



Render to CAVE Walls: ProjectionsRender to CAVE Walls: Projections
● With P’, you can set the projection matrix of the scene-looking cameras 

○ camera.projectionMatrix = pPrime;

● The off-screen render script will handle the rest!

● Remember to track the headset pose for your custom camera rig! 
○ camParent.transform.localPosition = 

UnityEngine.XR.InputTracking.GetLocalPosition(UnityEngine.XR.XRNode.LeftEye

);



Render to CAVE Walls: ProjectionsRender to CAVE Walls: Three Walls
● Now you should be able to render the same image to all three walls

● However we want to render different images to the three walls, as we have three 

different off-center projections

● Need the following modifications: 

○ No need to set camera target texture any more, set it in code, point to the 

following textures

○ Create two more materials with stereo textures

■ LeftWallMaterial (Already have)

■ RightWallMaterial 

● RightWallLeftEyeTexture

● RightWallRightEyeTexture

■ BottomWallMaterial

● BottomWallLeftEyeTexture

● BottomWallLeftEyeTexture



Render to CAVE Walls: ProjectionsDebug Mode
● Debug Mode to assist you with “head-in-hand” mode

● Visualize the “eye positions” of the controller

● Visualize the pyramids

● You need to draw 6 pyramids to both eyes
○ NOT 3 pyramids for each eye
○ Meaning you should see all 6 pyramids in both eyes

●

Green Dot: Left Eye Position (On the controller)

Red Dot: Right Eye Position (On the controller)

Yellow Dot: Controller Position (Just for your understanding)

P.S. Those dots don’t need to be rendered



Extra Resources
(Can also be found on course website)



Homework 4 Extra Resources

● Offscreen Rendering in Unity (Required to render camera views to the CAVE walls)

○ https://gist.github.com/danielbierwirth/10965844fecc38243007f0cd21843d90

● Off-Center Projection Matrix Calculation
○ https://web.archive.org/web/20190219024806/http://csc.lsu.edu/~kooima/articles/genperspective/

● Original CAVE Paper
○ http://www.cs.utah.edu/~thompson/vissim-seminar/on-line/CruzNeiraSig93.pdf

https://gist.github.com/danielbierwirth/10965844fecc38243007f0cd21843d90
https://web.archive.org/web/20190219024806/http://csc.lsu.edu/~kooima/articles/genperspective/
http://www.cs.utah.edu/~thompson/vissim-seminar/on-line/CruzNeiraSig93.pdf


Homework 3 Q&A


