CSE 167: Introduction to Computer Graphics Lecture #18: Wrapping Up

> Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2018

Announcements

- TA evaluations
- CAPE evaluation
- Final project blog entries due:
 - Tuesday, Dec 11th at 11:59pm
- Video due:
 - Thursday, Dec 13th at 3pm
- Final presentation videos will be shown in Center Hall 113

- Many textures are the result of small perturbations in the surface geometry
- Modeling these changes would result in an explosion in the number of geometric primitives.
- Bump mapping attempts to alter the lighting across a polygon to provide the illusion of texture.

[This chapter includes slides by Roger Crawfis]

Bump Mapping Example

Crawfis 1991

• Consider the lighting for a modeled surface.

- We can model this as deviations from some base surface.
- The question
 is then how
 these deviations
 change the lighting.

- Store in a texture and use textures to alter the surface normal
 - Does not change the shape of the surface
 - Just shaded as if it were a different shape

Simple textures work great

Cylinder w/Diffuse Texture Map

Cylinder w/Texture Map & Bump Map

Normal Mapping

Normal Mapping

Texture and normal maps

Just texture mapped

Notice: The geometry is unchanged. There's the same number of vertices and triangles. This effect is entirely from the normal map.

Normal Maps

Diffuse Color Texture Map

Normal Map

Each pixel represents a normal vector relative to the surface at that point. - I to I range is mapped to 0 to I for the texture so normals become colors. → Inverse of Normal Coloring

₹UCSD

Normal Map Operation

For each pixel, determine the normal from a texture image. Use that to compute the color.

What's Missing?

- There are no bumps on the silhouette of a bump or normal-mapped object
- \rightarrow Displacement Mapping

What Next?

Graphics Courses

- CSE 167: Introduction to CG (Schulze, Ramamoorthi) Fall and Winter
- CSE 165: 3D User Interfaces (Schulze) Winter
- CSE 169: Animation (Rotenberg) Winter 2019
- CSE 190:Virtual Reality (Schulze) Spring

Computer Graphics State of The Art

- ACM SIGGRAPH Asia 2018 Technical Papers (4'10)
 - https://www.youtube.com/watch?v=wdKpXvF_3AU
- CRYENGINEV Hunt: Showdown Tech Demo GDC 18 (2'11)
 - https://www.youtube.com/watch?v=Ffxd-vFspcs
- 2018 Student Reel | Unreal Engine (3'19)
 - https://www.youtube.com/watch?v=zfPSBcyIPpU

Good luck with your final projects!

