CSE 167:
 Introduction to Computer Graphics Lecture \#6: Color

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2013

Announcements

- Homework project \#3 due this Friday, October 18 ${ }^{\text {th }}$
- Starts at I:30pm as usual.
- Grading in order of names on white board in labs 260 and 270.
- Last day for late submissions of project \#2: this Friday
- Next Monday:
- No new homework assignment, but midterm review session in Center Hall I05 at 3pm

Lecture Overview

Color

- Color spaces
- Color reproduction on computer monitors

Shading

- Introduction
- Local shading models

Color Reproduction

- How can we reproduce, represent color?
- One option: store full spectrum
- Representation should be as compact as possible
- Any pair of colors that can be distinguished by humans should have two different representations

Color Spaces

- Set of parameters describing a color sensation
- "Coordinate system" for colors
- Three types of cones, expect three parameters to be sufficient
- Why not use L,M,S cone responses?

Color Spaces

- Set of parameters describing a color sensation
- "Coordinate system" for colors
- Three types of cones
- We expect three parameters to be sufficient

Trichromatic Theory

- Claims that any color can be represented as a weighted sum of three primary colors
- Proposes red, green, blue as primaries
- Developed in $18^{\text {th }}$ and $19^{\text {th }}$ century, before discovery of photoreceptor cells (Thomas Young, Hermann von Helmholtz)

Tristimulus Experiment

- Given arbitrary color, we want to know the weights for the three primaries
- Yields tristimulus values
- Experimental solution
- CIE (Commission Internationale de l'Eclairage, International Commission on Illumination), circa 1920

Tristimulus Experiment

- Determine tristimulus values for spectral colors experimentally

Tristimulus Experiment

- Spectral primary colors were chosen
- Blue (435.8nm), green (546.Inm), red (700nm)
- Matching curves for monochromatic target

Weight for red primary

- Negative values!

Target (580nm)

Tristimulus Experiment

Negative values

- Some spectral colors could not be matched by primaries in the experiment
"Trick"
- One primary could be added to the source (stimulus)
- Match with the other two
- Weight of primary added to the source is considered negative

Photoreceptor response and matching curves are different!

Tristimulus Values

- Matching values for a sum of spectra with small spikes are the same as sum of matching values for the spikes
- Monochromatic matching curves $\bar{r}(\lambda), \bar{g}(\lambda), \bar{b}(\lambda)$
- In the limit (spikes are infinitely narrow)

$$
\begin{aligned}
R & =\int \bar{r}(\lambda) L(\lambda) d \lambda \\
G & =\int \bar{g}(\lambda) L(\lambda) d \lambda \\
B & =\int \bar{b}(\lambda) L(\lambda) d \lambda
\end{aligned}
$$

CIE Color Spaces

- Matching curves $\bar{r}(\lambda), \bar{g}(\lambda), \bar{b}(\lambda)$ define CIE RGB color space
- CIE RGB values are color "coordinates"
- CIE was not satisfied with range of RGB values for visible colors
- Defined CIE XYZ color space
- Most commonly used color space today

CIE XYZ Color Space

- Determined coefficients such that
- Y corresponds to an experimentally determined brightness
- No negative values in matching curves
- White is $X Y Z=(1 / 3, I / 3, I / 3)$
- Linear transformation of CIE RGB:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\frac{1}{b_{21}}\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\frac{1}{0.17697}\left[\begin{array}{ccc}
0.49 & 0.31 & 0.20 \\
0.17697 & 0.81240 & 0.01063 \\
0.00 & 0.01 & 0.99
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

CIE XYZ Color Space

Matching curves

- No corresponding physical primaries

Tristimulus values

- Always positive!

$X=\int \bar{x}(\lambda) L(\lambda) d \lambda$
$Y=\int \bar{y}(\lambda) L(\lambda) d \lambda$
$Z=\int \bar{z}(\lambda) L(\lambda) d \lambda$

Summary

- CIE color spaces are defined by matching curves
- At each wavelength, matching curves give weights of primaries needed to produce color perception of that wavelength
- CIE RGB matching curves determined using tristimulus experiment
- Each distinct color perception has unique coordinates
- CIE RGB values may be negative
- CIE XYZ values are always positive

Lecture Overview

Color

- Color spaces
- Color reproduction on computer monitors

Shading

- Introduction
- Local shading models

Summary

- CIE color spaces are defined by matching curves
- At each wavelength, matching curves give weights of primaries needed to produce color perception of that wavelength
- CIE RGB matching curves determined using trisimulus experiment
- Each distinct color perception has unique coordinates
- CIE RGB values may be negative
- CIE XYZ values are always positive

CIE XYZ Color Space

Visualization

- Interpret XYZ as 3D coordinates
- Plot corresponding color at each point
- Many XYZ values do not correspond to visible colors

Chromaticity Diagram

- Project from XYZ coordinates to 2D for more convenient visualization

$$
x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z} \quad z=\frac{Z}{X+Y+Z}
$$

- Drop z-coordinate

Chromaticity Diagram

- Factor out luminance (perceived brightness) and chromaticity (hue)
> x,y represent chromaticity of a color

$$
x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z} \quad 0 \leq x, y \leq 1
$$

- Y is luminance
- CIE xyY color space
- Reconstruct XYZ values from xyY

$$
X=\frac{Y}{y} x \quad Z=\frac{Y}{y}(1-x-y)
$$

Chromaticity Diagram

- Visualizes x,y plane (chromaticities)
- Pure spectral colors on boundary

Colors shown do not correspond to colors represented by (x, y) coordinates!

Chromaticity Diagram

- Visualizes x,y plane (chromaticities)
- Pure spectral colors on boundary
- Weighted sum of any two colors lies on line connecting colors

Colors shown do not correspond to colors represented by (x, y) coordinates!

Chromaticity Diagram

- Visualizes x,y plane (chromaticities)
- Pure spectral colors on boundary
- Weighted sum of any two colors lies on line connecting colors
- Weighted sum of any number of colors lies in convex hull of colors (gamut)

Colors shown do not correspond to colors represented by (x, y) coordinates!

Gamut

- Any device based on three primaries can only produce colors within the triangle spanned by the primaries
- Points outside gamut correspond to negative weights of primaries

Gamut of CIE RGB primaries

Gamut of typical CRT monitor

RGB Monitors

- Given red, green, blue (RBG) values, what color will your monitor produce?
- I.e., what are the CIE XYZ or CIE RGB coordinates of the displayed color?
- How are OpenGL RGB values related to CIE XYZ, CIE RGB?
- Often you don't know!
- OpenGL RGB $=$ CIE XYZ, CIE RGB

Gamut of CIE RGB primaries

Gamut of typical CRT monitor

sRGB

- Standard color space, with standard conversion to CIE XYZ
- Designed to match RGB values of typical monitor under typical viewing conditions (dimly lit office)
- If no calibration information available, it is best to interpret RGB values as sRGB
- sRGB roughly corresponds to 2.2 gamma correction
- sRGB is supported by OpenGL as
- sRGB textures (since OpenGL 2.I)
, sRGB framebuffers (since OpenGL 3.0)

Video: Gamut Comparison

- Macbook Pro/Retina display compared to sRGB
- http://www.youtube.com/watch?v=mIFnztUehP4
p sRGB: solid line, Macbook Pro: wireframe

Conclusions

- Color reproduction on consumer monitors is less than perfect
- The same RGB values on one monitor look different than on another
- Given a color in CIE XYZ coordinates, consumer systems do not reliably produce that color
- Need color calibration
- But no selling point for consumers
- Standard for digital publishing, printing, photography

Further Reading

- Wikipedia pages

- http://en.wikipedia.org/wiki/CIE_1931_color_space
- http://en.wikipedia.org/wiki/CIELAB
- More details:
- CIE Color Space: http://www.fho-emden.de/~hoffmann/ciexyz29082000.pdf

Lecture Overview

Color

- Color spaces
- Color reproduction on computer monitors

Shading

- Introduction
- Local shading models

Shading

- Compute interaction of light with surfaces
- Requires simulation of physics
, "Global illumination"
- Multiple bounces of light
- Computationally expensive, minutes per image
- Used in movies, architectural design, etc.

Global Illumination

- Covered by CSEI68

Interactive Applications

- No physics-based simulation
- Simplified models
- Reproduce perceptually most important effects
- Local illumination
- Only one bounce of light between light source and viewer

Rendering Pipeline

- Position object in 3D
- Determine colors of vertices
- Per vertex shading
- Map triangles to 2D
- Draw triangles
- Per pixel shading

Lecture Overview

Color

- Color spaces
- Color reproduction on computer monitors

Shading

- Introduction
- Local shading models

Local Illumination

- What gives a material its color?
- How is light reflected by a
- Mirror
- White sheet of paper
- Blue sheet of paper
- Glossy metal

Local Illumination

- Model reflection of light at surfaces
- Assumption: no subsurface scattering
- Bidirectional reflectance distribution function (BRDF)
- Given light direction, viewing direction, how much light is reflected towards the viewer
- For any pair of light/viewing directions!

Local Illumination

Simplified model

- Sum of 3 components
- Covers a large class of real surfaces

Local Illumination

Simplified model

- Sum of 3 components
- Covers a large class of real surfaces

Diffuse Reflection

- Ideal diffuse material reflects light equally in all directions
- View-independent
- Matte, not shiny materials
- Paper
- Unfinished wood
- Unpolished stone

Diffuse Reflection

- Beam of parallel rays shining on a surface
- Area covered by beam varies with the angle between the beam and the normal
- The larger the area, the less incident light per area
- Incident light per unit area is proportional to the cosine of the angle between the normal and the light rays
- Object darkens as normal turns away from light
- Lambert's cosine law (Johann Heinrich Lambert, I760)
- Diffuse surfaces are also called Lambertian surfaces

Diffuse Reflection

- Given
- Unit surface normal n
- Unit light direction L
- Material diffuse reflectance (material color) k_{d}
- Light color (intensity) c_{l}
- Diffuse color c_{d} is:

$$
c_{d}=c_{l} k_{d}(\mathbf{n} \cdot \mathbf{L})
$$

Proportional to cosine between normal and light

Diffuse Reflection

Notes

- Parameters k_{d}, c_{l} are r,g,b vectors
- Need to compute r,g,b values of diffuse color c_{d} separately
- Parameters in this model have no precise physical meaning
- c_{i} : strength, color of light source
- k_{d} fraction of reflected light, material color

Diffuse Reflection

- Provides visual cues
- Surface curvature
- Depth variation

Lambertian (diffuse) sphere under different lighting directions

OpenGL

- Lights (glLight*)
- Values for light: $(0,0,0) \leq c_{l} \leq(1,1,1)$
- Definition: $(0,0,0)$ is black, $(1,1,1)$ is white
- OpenGL
- Values for diffuse reflection
- Fraction of reflected light: $(0,0,0) \leq k_{d} \leq(1,1,1)$
- Consult OpenGL Programming Guide (Red Book)
- See course web site

Local Illumination

Simplified model

- Sum of 3 components
- Covers a large class of real surfaces

Specular Reflection

- Shiny surfaces
- Polished metal
- Glossy car finish
- Plastics
- Specular highlight
- Blurred reflection of the light source
- Position of highlight depends on viewing direction

Specular highlight

Specular Reflection

- Ideal specular reflection is mirror reflection
- Perfectly smooth surface
- Incoming light ray is bounced in single direction
- Angle of incidence equals angle of reflection

Law of Reflection

- Angle of incidence equals angle of reflection

$$
\begin{aligned}
& \overrightarrow{\mathbf{R}}+\overrightarrow{\mathbf{L}}=2 \cos \theta \overrightarrow{\mathbf{n}}=2(\overrightarrow{\mathbf{L}} \cdot \overrightarrow{\mathbf{n}}) \overrightarrow{\mathbf{n}} \\
& \overrightarrow{\mathbf{R}}=2(\overrightarrow{\mathbf{L}} \cdot \overrightarrow{\mathbf{n}}) \overrightarrow{\mathbf{n}}-\overrightarrow{\mathbf{L}}
\end{aligned}
$$

Specular Reflection

- Many materials are not perfect mirrors
- Glossy materials

Glossy teapot

Glossy Materials

- Assume surface composed of small mirrors with random orientation (micro-facets)
- Smooth surfaces
- Micro-facet normals close to surface normal
- Sharp highlights
- Rough surfaces
- Micro-facet normals vary strongly
- Blurry highlight

Polished
Smooth
Rough
Very rough

Glossy Surfaces

- Expect most light to be reflected in mirror direction
- Because of micro-facets, some light is reflected slightly off ideal reflection direction
- Reflection
- Brightest when view vector is aligned with reflection
- Decreases as angle between view vector and reflection direction increases

Phong Shading Model

- Developed by Bui Tuong Phong in 1973
- Specular reflectance coefficient k_{s}
- Phong exponent p
- Greater p means smaller (sharper) highlight

$$
c=k_{s} c_{l}(\mathbf{R} \cdot \mathbf{e})^{p}
$$

Phong Shading Model

Blinn Shading Model (Jim Blinn, 1977)

- Modification of Phong Shading Model
- Defines unit halfway vector $\mathbf{h}=\frac{\mathbf{L}+\mathbf{e}}{\|\mathbf{L}+\mathbf{e}\|}$
- Halfway vector represents normal of micro-facet that would lead to mirror reflection to the eye

Blinn Shading Model

- The larger the angle between micro-facet orientation and normal, the less likely
- Use cosine of angle between them
- Shininess parameter s
- Very similar to Phong Model

$$
c=k_{s} c_{l}(\mathbf{h} \cdot \mathbf{n})^{s}
$$

Local Illumination

Simplified model

- Sum of 3 components
- Covers a large class of real surfaces

Ambient Light

- In real world, light is bounced all around scene
- Could use global illumination techniques to simulate
- Simple approximation
- Add constant ambient light at each point: $k_{a} c_{a}$
- Ambient light color: c_{a}
- Ambient reflection coefficient: k_{a}
- Areas with no direct illumination are not completely dark

Complete Blinn-Phong Shading Model

- Blinn-Phong model with several light sources I
- All colors and reflection coefficients are vectors with 3 components for red, green, blue
$c=\sum_{i} c_{l_{i}}\left(k_{d}\left(\mathbf{L}_{i} \cdot \mathbf{n}\right)+k_{s}\left(\mathbf{h}_{i} \cdot \mathbf{n}\right)^{s}\right)+k_{a} c_{a}$

