CSE 167:
Introduction to Computer Graphics Lecture \#5: Projection

Jürgen P. Schulze, Ph.D.

University of California, San Diego
Fall Quarter 2018

Announcements

- Tomorrow: late grading for homework I 2pm-3:I5pm in CSE B260
- Upload code to TritonEd by 2 pm
- Demonstrate in CSE basement labs
- Next Friday: homework 2 due at 2pm
, Upload to TritonEd
- Demonstrate in CSE basement labs
- Opportunities for CSE 199/I98 or paid programmer positions
- Magic Leap Conference on future of AR:
- Keynote address at:
- https://www.youtube.com/watch?v=vV8oGahOSgc

Topics

- Quaternions
- Projection

Quaternions

Rotation Calculations

- Intuitive approach: Euler Angles
- Simplest way to calculate rotations
- Defines rotation by 3 sequential rotations about coordinate axes
- Example for rotation order Z-Y-X:

http://www.globalspec. com/reference/49379/203279/3-3-euler-angles

Problems With Euler Angles

- Problems with Euler angles:
- No standard for order of rotations
- Gimbal Lock, occurs in certain object orientations
, Video: https://www.youtube.com/watch?v=rrUCBOIJdt4
- Better: rotation about arbitrary axis (no Gimbal lock)
- Can be done with 4×4 matrix
- But: smoothly interpolating between two orientations is difficult
- \rightarrow Quaternions

Quaternion Definition

- Given angle and axis of rotation:
- a: rotation angle
- $\{n x, n y, n z\}$: normalized rotation axis
- Calculation of quaternion coefficients w, x, y, z :
b $\mathrm{w}=\cos (\mathrm{a} / 2)$
b $x=\sin (a / 2) * n x$
- $y=\sin (a / 2) * n y$
b $z=\sin (a / 2) * n z$

Useful Quaternions

w	x	y	z	Description
1	0	0	0	Identity quaternion, no rotation
0	1	0	0	180° turn around X axis
0	0	1	0	180° turn around Y axis
0	0	0	1	180° turn around Zaxis
sqrt(0.5)	sqrt(0.5)	0	0	90° rotation around X axis
sqrt(0.5)	0	sqrt(0.5)	0	90° rotation around Y axis
sqrt(0.5)	0	0	sqrt(0.5)	90° rotation around Z axis
sqrt(0.5)	-sqrt(0.5)	0	0	-90° rotation around X axis
sqrt(0.5)	0	-sqrt(0.5)	0	-90 ${ }^{\circ}$ rotation around Y axis
sqrt(0.5)	0	0	-sqrt(0.5)	-90° rotation around Zaxis

Quaternions in GLM

- Create a quaternion for a 90 degree rotation about the y axis:
| glm::quat rot = glm::angleAxis(glm::radians(90.f), glm::vec3(0.f, I.f, 0.f));
- Cast the quaternion into a 4×4 matrix:
| glm::mat4 rotate = glm::mat4_cast(rot);

Quaternions: Further Reading

- Rotating Objects Using Quaternions:
- http://www.gamasutra.com/view/feature/I3|686/rotating_objec ts using_quaternions.php
- Quaternions in GLM:
- http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/
- Quaternions in Unity 3D:
- https://docs.unity3d.com/ScriptReference/Quaternion.html
- Quaternions in OpenSceneGraph :
- http://www.openscenegraph.org/index.php/documentation/kno wledge-base/40-quaternion-maths

Projection

Projection

- Goal:

Given 3D points (vertices) in camera coordinates, determine corresponding image coordinates

- Transforming 3D points into 2D is called Projection
- Typically one of two types of projection is used:
- Orthographic Projection (=Parallel Projection)

- Perspective Projection: most commonly used

Perspective Projection

- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)

- Things farther away appear to be smaller
- Discovery attributed to Filippo Brunelleschi (Italian architect) in the early l400's

Perspective Projection

- Project along rays that converge in center of projection

Perspective Projection

Perspective Projection

From law of ratios in similar triangles follows:

$$
\begin{gathered}
\frac{y^{\prime}}{d}=\frac{y_{1}}{z_{1}} \rightarrow y^{\prime}=\frac{y_{1} d}{z_{1}} \\
\text { Similarly: } \quad x^{\prime}=\frac{x_{1} d}{z_{1}}
\end{gathered}
$$

By definition: $\quad z^{\prime}=d$

- We can express this using homogeneous coordinates and 4×4 matrices as follows

Perspective Projection

$$
\begin{aligned}
x^{\prime} & =\frac{x_{1} d}{z_{1}} \\
y^{\prime} & =\frac{y_{1} d}{z_{1}}
\end{aligned}
$$

$$
z^{\prime}=d
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right] \Rightarrow\left[\begin{array}{c}
x d / z \\
y d / z \\
d \\
1
\end{array}\right]
$$

Projection matrix

Perspective Projection

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right]=\left[\begin{array}{c}
x d / z \\
y d / z \\
d \\
1
\end{array}\right]
$$

Projection matrix \mathbf{P}

- Using projection matrix, homogeneous division seems more complicated than just multiplying all coordinates by d / z, so why do it?
- It will allow us to:
- Handle different types of projections in a unified way
- Define arbitrary view volumes

Topics

- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling

View Volume

- View volume $=3 \mathrm{D}$ volume seen by camera

Camera coordinates

World coordinates

Projection Matrix

Camera coordinates

Canonical view volume

Perspective View Volume

General view volume

- Defined by 6 parameters, in camera coordinates
, Left, right, top, bottom boundaries
, Near, far clipping planes
- Clipping planes to avoid numerical problems
, Divide by zero
, Low precision for distant objects
, Usually symmetric, i.e., left=-right, top=-bottom

Perspective View Volume

Symmetrical view volume

- Only 4 parameters
, Vertical field of view (FOV)
- Image aspect ratio (width/height)
- Near, far clipping planes

$$
\begin{aligned}
\text { aspect ratio } & =\frac{\text { right }- \text { left }}{\text { top }- \text { bottom }}=\frac{\text { right }}{\text { top }} \\
\tan (F O V / 2) & =\frac{\text { top }}{\text { near }}
\end{aligned}
$$

Perspective Projection Matrix

- General view frustum with 6 parameters

$$
\begin{aligned}
& \mathbf{P}_{\text {persp }}(\text { left, right, top, bottom, near, far })= \\
& {\left[\begin{array}{cccc}
\frac{2 \text { near }}{\text { right-left }} & 0 & \frac{\text { right }+ \text { left }}{\text { right-left }} & 0 \\
0 & \frac{2 \text { near }}{\text { top-bottom }} & \frac{\text { top }+ \text { bottom }}{\text { top-bottom }} & 0 \\
0 & 0 & \frac{-(\text { far }+ \text { near })}{\text { far-near }} & \frac{-2 \text { far } \cdot \mathrm{near}}{\text { far-near }} \\
0 & 0 & -1 & 0
\end{array}\right]}
\end{aligned}
$$

Perspective Projection Matrix

- Symmetrical view frustum with field of view, aspect ratio, near and far clip planes

$\mathbf{P}_{\text {persp }}(F O V$, aspect, near, far $)=\left[\begin{array}{cccc}\frac{1}{a s p e c t \cdot \tan (F O V / 2)} & 0 & 0 & 0 \\ 0 & \frac{1}{\tan (F O V / 2)} & 0 & 0 \\ 0 & 0 & \frac{\text { near }+\mathrm{far}}{\text { near }-\mathrm{far}} & \frac{2 \cdot \mathrm{near} \cdot \mathrm{far}}{\text { near }-\mathrm{far}} \\ 0 & 0 & -1 & 0\end{array}\right]$

Canonical View Volume

- Goal: create projection matrix so that
- User defined view volume is transformed into canonical view volume: cube $[-1,1] \times[-1,1] x[-1,1]$
- Multiplying corner vertices of view volume by projection matrix and performing homogeneous divide yields corners of canonical view volume
- Perspective and orthographic projection are treated the same way
- Canonical view volume is last stage in which coordinates are in 3D
- Next step is projection to 2D frame buffer

Viewport Transformation

- After applying projection matrix, scene points are in normalized viewing coordinates
- Per definition within range [-1..1] x [-1..1] x [-1..1]
- Next is projection from 3D to 2D (not reversible)
- Normalized viewing coordinates can be mapped to image (=pixel=frame buffer) coordinates
- Range depends on window (view port) size:
[x0...x1] x [y0...y1]
- Scale and translation required:

$$
\mathbf{D}\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=\left[\begin{array}{cccc}
\left(x_{1}-x_{0}\right) / 2 & 0 & 0 & \left(x_{0}+x_{1}\right) / 2 \\
0 & \left(y_{1}-y_{0}\right) / 2 & 0 & \left(y_{0}+y_{1}\right) / 2 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\left.\mathbf{D P C} \mathbf{C}^{-1} \mathbf{M}\right|_{\text {Object space }}
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\mathbf{D P C} \mathbf{C}^{-1} \left\lvert\, \begin{array}{|c|c|}
\mathbf{M} \mid \\
\mathbf{W o r l d ~ s p a c e ~ s p a c e ~}^{\text {Obld space }}
\end{array}\right.
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\mathbf{D P}\left|\mathbf{C}^{-1}\right| \begin{aligned}
& \mathbf{M} \mid \\
& \mathbf{p}_{\text {Object space }} \\
& \text { World space }
\end{aligned}
$$

, M: Object-to-world matrix

- C: camera matrix
- P: projection matrix
- D: viewport matrix

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\mathbf{D}\left|\mathbf{P C}^{-1}\right| \begin{gathered}
\mathbf{M} \mid \\
\begin{array}{l}
\text { Object space } \\
\text { World space }
\end{array} \\
\text { Camera space } \\
\text { Canonical view volume }
\end{gathered}
$$

, M: Object-to-world matrix

- C: camera matrix
> P: projection matrix
- D: viewport matrix

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=|\mathbf{D}| \mathbf{P C}^{-1} \left\lvert\, \begin{aligned}
& \mathbf{M} \mathbf{p} \\
& \begin{array}{l}
\text { Worject space } \\
\text { Wpace }
\end{array} \\
& \text { Camera space } \\
& \text { Canonical view volume }
\end{aligned}\right.
$$

, M: Object-to-world matrix

- C: camera matrix
- P: projection matrix
, D: viewport matrix

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{D P C}{ }^{-1} \mathbf{M p} \\
\mathbf{p}^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right] \quad \text { Pixel coordinates: }
\end{gathered}
$$

, M: Object-to-world matrix
, C: camera matrix

- P: projection matrix
- D: viewport matrix

The Complete Vertex Transformation

Complete Vertex Transformation in OpenGL

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\begin{aligned}
& \text { Projection matrix } \\
& \mathbf{p}^{\prime}=\mathbf{D} \mathbf{P C}^{-1} \mathbf{M} \mathbf{p}
\end{aligned}
$$

, M: Object-to-world matrix

- C: camera matrix
- P: projection matrix

D: viewport matrix

Complete Vertex Transformation in OpenGL

- ModelView matrix: $\mathbf{C}^{-1} \mathbf{M}$
- Defined by the programmer.
- Think of the ModelView matrix as where you stand with the camera and the direction you point it.
- Projection matrix: P
- Think of the projection matrix as describing the attributes of your camera, such as field of view, focal length, etc.
- Viewport, D
- Specify via glViewport(x, y, width, height)

Vertex Shader Code

in vec4 vertexPosition;
// ...
uniform mat4 ModelView, Projection;
void main() \{
gl_Position = Projection * ModelView

* vertexPosition;
// ...
\}

