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Announcements
 Tomorrow: late grading for homework 1 2pm-3:15pm in CSE 

B260
 Upload code to TritonEd by 2pm
 Demonstrate in CSE basement labs

 Next Friday: homework 2 due at 2pm
 Upload to TritonEd
 Demonstrate in CSE basement labs

 Opportunities for CSE 199/198 or paid programmer positions
 Magic Leap Conference on future of AR: 
 Keynote address at:

 https://www.youtube.com/watch?v=vV8oGahOSgc
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https://www.youtube.com/watch?v=vV8oGahOSgc


Topics
 Quaternions
 Projection
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Quaternions



Rotation Calculations
 Intuitive approach: Euler Angles
 Simplest way to calculate rotations
 Defines rotation by 3 sequential rotations about coordinate  

axes

 Example for rotation order Z-Y-X:

http://www.globalspec.com/reference/49379/203279/3-3-euler-angles



Problems With Euler Angles
 Problems with Euler angles:
 No standard for order of rotations
 Gimbal Lock, occurs in certain object orientations

 Video: https://www.youtube.com/watch?v=rrUCBOlJdt4

 Better: rotation about arbitrary axis (no Gimbal lock)
 Can be done with 4x4 matrix

 But: smoothly interpolating between two orientations is 
difficult

  Quaternions



Quaternion Definition
 Given angle and axis of rotation:
 a: rotation angle
 {nx,ny,nz}: normalized rotation axis

 Calculation of quaternion  coefficients w, x, y, z:
 w = cos(a /2)
 x = sin(a /2) * nx
 y = sin(a /2) * ny
 z = sin(a /2) * nz



Useful Quaternions

w x y z Description

1 0 0 0 Identity quaternion, no rotation

0 1 0 0 180° turn around X axis

0 0 1 0 180° turn around Y axis

0 0 0 1 180° turn around Zaxis

sqrt(0.5) sqrt(0.5) 0 0 90° rotation around X axis

sqrt(0.5) 0 sqrt(0.5) 0 90° rotation around Y axis

sqrt(0.5) 0 0 sqrt(0.5) 90° rotation around Z axis

sqrt(0.5) -sqrt(0.5) 0 0 -90° rotation around X axis

sqrt(0.5) 0 -sqrt(0.5) 0 -90° rotation around Y axis

sqrt(0.5) 0 0 -sqrt(0.5) -90° rotation around Zaxis



Quaternions in GLM
 Create a quaternion for a 90 degree rotation about the y 

axis:
 glm::quat rot = 

glm::angleAxis(glm::radians(90.f), glm::vec3(0.f, 1.f, 0.f));

 Cast the quaternion into a 4x4 matrix:
 glm::mat4 rotate = glm::mat4_cast(rot);
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Quaternions: Further Reading
 Rotating Objects Using Quaternions:
 http://www.gamasutra.com/view/feature/131686/rotating_objec

ts_using_quaternions.php

 Quaternions in GLM:
 http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-

17-quaternions/

 Quaternions in Unity 3D:
 https://docs.unity3d.com/ScriptReference/Quaternion.html

 Quaternions in OpenSceneGraph :
 http://www.openscenegraph.org/index.php/documentation/kno

wledge-base/40-quaternion-maths

http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/
https://docs.unity3d.com/ScriptReference/Quaternion.html
http://www.openscenegraph.org/index.php/documentation/knowledge-base/40-quaternion-maths


Projection



Projection
 Goal:

Given 3D points (vertices) in camera coordinates, 
determine corresponding image coordinates

 Transforming 3D points into 2D is called Projection
 Typically one of two types of projection is used:
 Orthographic Projection (=Parallel Projection)

 Perspective Projection: most commonly used
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Perspective Projection
 Most common for computer graphics
 Simplified model of human eye, or camera lens (pinhole camera)

 Things farther away appear to be smaller
 Discovery attributed to Filippo Brunelleschi (Italian architect) in 

the early 1400’s
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Perspective Projection
 Project along rays that converge in center of projection

2D image plane

Center of
projection

3D scene
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Perspective Projection
Parallel lines are
no longer parallel,
converge in one point

Earliest example:
La Trinitá (1427) by Masaccio15



Perspective Projection
From law of ratios in similar triangles follows:

 We can express this using homogeneous coordinates and 
4x4 matrices as follows

Image plane
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

Similarly:

By definition:



Perspective Projection

Homogeneous divisionProjection matrix
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Perspective Projection

 Using projection matrix, homogeneous division seems more complicated 
than just multiplying all coordinates by d/z, so why do it?

 It will allow us to:
 Handle different types of projections in a unified way
 Define arbitrary view volumes

Projection matrix P
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Topics
 View Volumes
 Vertex Transformation
 Rendering Pipeline
 Culling
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View Volume
 View volume = 3D volume seen by camera

World coordinates

Camera coordinates
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Projection 
matrix

Projection Matrix

Camera coordinates

Canonical view volume
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Image space
(pixel coordinates)

Viewport 
transformation



Perspective View Volume
General view volume

 Defined by 6 parameters, in camera coordinates 
 Left, right, top, bottom boundaries
 Near, far clipping planes

 Clipping planes to avoid numerical problems
 Divide by zero
 Low precision for distant objects

 Usually symmetric, i.e., left=-right, top=-bottom

Camera
coordinates
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Perspective View Volume

Symmetrical view volume

 Only 4 parameters
 Vertical field of view (FOV)
 Image aspect ratio (width/height)
 Near, far clipping planes

-z
FOV

y

z=-near

z=-far

y=top

aspect ratio= right − left
top − bottom

=
right
top

 

tan(FOV / 2) = top
near
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Perspective Projection Matrix
 General view frustum with 6 parameters

Camera
coordinates
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Perspective Projection Matrix
 Symmetrical view frustum with field of view, aspect 

ratio, near and far clip planes

Ppersp (FOV ,aspect,near, far) =

1
aspect ⋅ tan(FOV / 2)

0 0 0

0 1
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0 0
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Camera
coordinates
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Canonical View Volume
 Goal: create projection matrix so that
 User defined view volume is transformed into canonical 

view volume: cube [-1,1]x[-1,1]x[-1,1]
 Multiplying corner vertices of view volume by projection 

matrix and performing homogeneous divide yields corners 
of canonical view volume 

 Perspective and orthographic projection are treated 
the same way

 Canonical view volume is last stage in which 
coordinates are in 3D
 Next step is projection to 2D frame buffer
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Viewport Transformation
 After applying projection matrix, scene points are in normalized 

viewing coordinates
 Per definition within range [-1..1] x [-1..1] x [-1..1] 

 Next is projection from 3D to 2D (not reversible)
 Normalized viewing coordinates can be mapped to image 

(=pixel=frame buffer) coordinates
 Range depends on window (view port) size:

[x0…x1] x [y0…y1]

 Scale and translation required:

D x0 , x1, y0 , y1( )=

x1 − x0( ) 2 0 0 x0 + x1( ) 2
0 y1 − y0( ) 2 0 y0 + y1( ) 2
0 0 1 2 1 2
0 0 0 1
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
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Lecture Overview
 View Volumes
 Vertex Transformation
 Rendering Pipeline
 Culling
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Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

Object space
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Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Object space
World space



Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Object space
World space

Camera space



Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Object space
World space

Camera space
Canonical view volume



Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Object space
World space

Camera space

Image space
Canonical view volume



Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Pixel coordinates:



The Complete Vertex Transformation
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Model 
Matrix

Camera 
Matrix

Projection 
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Viewport 
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Object 
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World 
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Camera 
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View Volume 
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Window 
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Complete Vertex Transformation in OpenGL
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Projection matrix



Complete Vertex Transformation in OpenGL
 ModelView matrix: C-1M
 Defined by the programmer.
 Think of the ModelView matrix as where you stand with the 

camera and the direction you point it.
 Projection matrix: P
 Think of the projection matrix as describing the attributes 

of your camera, such as field of view, focal length, etc.
 Viewport, D
 Specify via glViewport(x, y, width, height) 
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Vertex Shader Code
in vec4 vertexPosition; 

// ...

uniform mat4 ModelView, Projection;

void main() {

gl_Position = Projection * ModelView
* vertexPosition;

// ...

}
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