
CSE 167:
Introduction to Computer Graphics
Lecture #5: Projection

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2018

Announcements
 Tomorrow: late grading for homework 1 2pm-3:15pm in CSE

B260
 Upload code to TritonEd by 2pm
 Demonstrate in CSE basement labs

 Next Friday: homework 2 due at 2pm
 Upload to TritonEd
 Demonstrate in CSE basement labs

 Opportunities for CSE 199/198 or paid programmer positions
 Magic Leap Conference on future of AR:
 Keynote address at:

 https://www.youtube.com/watch?v=vV8oGahOSgc

2

https://www.youtube.com/watch?v=vV8oGahOSgc

Topics
 Quaternions
 Projection

3

Quaternions

Rotation Calculations
 Intuitive approach: Euler Angles
 Simplest way to calculate rotations
 Defines rotation by 3 sequential rotations about coordinate

axes

 Example for rotation order Z-Y-X:

http://www.globalspec.com/reference/49379/203279/3-3-euler-angles

Problems With Euler Angles
 Problems with Euler angles:
 No standard for order of rotations
 Gimbal Lock, occurs in certain object orientations

 Video: https://www.youtube.com/watch?v=rrUCBOlJdt4

 Better: rotation about arbitrary axis (no Gimbal lock)
 Can be done with 4x4 matrix

 But: smoothly interpolating between two orientations is
difficult

  Quaternions

Quaternion Definition
 Given angle and axis of rotation:
 a: rotation angle
 {nx,ny,nz}: normalized rotation axis

 Calculation of quaternion coefficients w, x, y, z:
 w = cos(a /2)
 x = sin(a /2) * nx
 y = sin(a /2) * ny
 z = sin(a /2) * nz

Useful Quaternions

w x y z Description

1 0 0 0 Identity quaternion, no rotation

0 1 0 0 180° turn around X axis

0 0 1 0 180° turn around Y axis

0 0 0 1 180° turn around Zaxis

sqrt(0.5) sqrt(0.5) 0 0 90° rotation around X axis

sqrt(0.5) 0 sqrt(0.5) 0 90° rotation around Y axis

sqrt(0.5) 0 0 sqrt(0.5) 90° rotation around Z axis

sqrt(0.5) -sqrt(0.5) 0 0 -90° rotation around X axis

sqrt(0.5) 0 -sqrt(0.5) 0 -90° rotation around Y axis

sqrt(0.5) 0 0 -sqrt(0.5) -90° rotation around Zaxis

Quaternions in GLM
 Create a quaternion for a 90 degree rotation about the y

axis:
 glm::quat rot =

glm::angleAxis(glm::radians(90.f), glm::vec3(0.f, 1.f, 0.f));

 Cast the quaternion into a 4x4 matrix:
 glm::mat4 rotate = glm::mat4_cast(rot);

9

Quaternions: Further Reading
 Rotating Objects Using Quaternions:
 http://www.gamasutra.com/view/feature/131686/rotating_objec

ts_using_quaternions.php

 Quaternions in GLM:
 http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-

17-quaternions/

 Quaternions in Unity 3D:
 https://docs.unity3d.com/ScriptReference/Quaternion.html

 Quaternions in OpenSceneGraph :
 http://www.openscenegraph.org/index.php/documentation/kno

wledge-base/40-quaternion-maths

http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/
https://docs.unity3d.com/ScriptReference/Quaternion.html
http://www.openscenegraph.org/index.php/documentation/knowledge-base/40-quaternion-maths

Projection

Projection
 Goal:

Given 3D points (vertices) in camera coordinates,
determine corresponding image coordinates

 Transforming 3D points into 2D is called Projection
 Typically one of two types of projection is used:
 Orthographic Projection (=Parallel Projection)

 Perspective Projection: most commonly used
12

Perspective Projection
 Most common for computer graphics
 Simplified model of human eye, or camera lens (pinhole camera)

 Things farther away appear to be smaller
 Discovery attributed to Filippo Brunelleschi (Italian architect) in

the early 1400’s

13

Perspective Projection
 Project along rays that converge in center of projection

2D image plane

Center of
projection

3D scene

14

Perspective Projection
Parallel lines are
no longer parallel,
converge in one point

Earliest example:
La Trinitá (1427) by Masaccio15

Perspective Projection
From law of ratios in similar triangles follows:

 We can express this using homogeneous coordinates and
4x4 matrices as follows

Image plane

1

1'
z
y

d
y
=

1

1'
z
dyy =

dz ='

1

1'
z
dxx =

16



Similarly:

By definition:

Perspective Projection

Homogeneous divisionProjection matrix

1

1'
z
dyy =

dz ='

1

1'
z
dxx =

17

Perspective Projection

 Using projection matrix, homogeneous division seems more complicated
than just multiplying all coordinates by d/z, so why do it?

 It will allow us to:
 Handle different types of projections in a unified way
 Define arbitrary view volumes

Projection matrix P

18

Topics
 View Volumes
 Vertex Transformation
 Rendering Pipeline
 Culling

19

View Volume
 View volume = 3D volume seen by camera

World coordinates

Camera coordinates

20

Projection
matrix

Projection Matrix

Camera coordinates

Canonical view volume

21

Image space
(pixel coordinates)

Viewport
transformation

Perspective View Volume
General view volume

 Defined by 6 parameters, in camera coordinates
 Left, right, top, bottom boundaries
 Near, far clipping planes

 Clipping planes to avoid numerical problems
 Divide by zero
 Low precision for distant objects

 Usually symmetric, i.e., left=-right, top=-bottom

Camera
coordinates

22

Perspective View Volume

Symmetrical view volume

 Only 4 parameters
 Vertical field of view (FOV)
 Image aspect ratio (width/height)
 Near, far clipping planes

-z
FOV

y

z=-near

z=-far

y=top

aspect ratio= right − left
top − bottom

=
right
top

tan(FOV / 2) = top
near

23

Perspective Projection Matrix
 General view frustum with 6 parameters

Camera
coordinates

24

Perspective Projection Matrix
 Symmetrical view frustum with field of view, aspect

ratio, near and far clip planes

Ppersp (FOV ,aspect,near, far) =

1
aspect ⋅ tan(FOV / 2)

0 0 0

0 1
tan(FOV / 2)

0 0

0 0 near + far
near − far

2 ⋅near ⋅ far
near − far

0 0 −1 0





























-z
FOV

y

z=-near

z=-far

y=top

Camera
coordinates

25

Canonical View Volume
 Goal: create projection matrix so that
 User defined view volume is transformed into canonical

view volume: cube [-1,1]x[-1,1]x[-1,1]
 Multiplying corner vertices of view volume by projection

matrix and performing homogeneous divide yields corners
of canonical view volume

 Perspective and orthographic projection are treated
the same way

 Canonical view volume is last stage in which
coordinates are in 3D
 Next step is projection to 2D frame buffer

26

Viewport Transformation
 After applying projection matrix, scene points are in normalized

viewing coordinates
 Per definition within range [-1..1] x [-1..1] x [-1..1]

 Next is projection from 3D to 2D (not reversible)
 Normalized viewing coordinates can be mapped to image

(=pixel=frame buffer) coordinates
 Range depends on window (view port) size:

[x0…x1] x [y0…y1]

 Scale and translation required:

D x0 , x1, y0 , y1()=

x1 − x0() 2 0 0 x0 + x1() 2
0 y1 − y0() 2 0 y0 + y1() 2
0 0 1 2 1 2
0 0 0 1



















27

Lecture Overview
 View Volumes
 Vertex Transformation
 Rendering Pipeline
 Culling

28

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

Object space

29

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

30

Object space
World space

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

31

Object space
World space

Camera space

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

32

Object space
World space

Camera space
Canonical view volume

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

33

Object space
World space

Camera space

Image space
Canonical view volume

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

34

Pixel coordinates:

The Complete Vertex Transformation

35

Model
Matrix

Camera
Matrix

Projection
Matrix

Viewport
Matrix

Object
Coordinates

World
Coordinates

Camera
Coordinates

Canonical
View Volume
Coordinates

Window
Coordinates

Complete Vertex Transformation in OpenGL
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

36

Projection matrix

Complete Vertex Transformation in OpenGL
 ModelView matrix: C-1M
 Defined by the programmer.
 Think of the ModelView matrix as where you stand with the

camera and the direction you point it.
 Projection matrix: P
 Think of the projection matrix as describing the attributes

of your camera, such as field of view, focal length, etc.
 Viewport, D
 Specify via glViewport(x, y, width, height)

37

Vertex Shader Code
in vec4 vertexPosition;

// ...

uniform mat4 ModelView, Projection;

void main() {

gl_Position = Projection * ModelView
* vertexPosition;

// ...

}

38

	CSE 167:�Introduction to Computer Graphics�Lecture #5: Projection
	Announcements
	Topics
	Quaternions
	Rotation Calculations
	Problems With Euler Angles
	Quaternion Definition
	Useful Quaternions
	Quaternions in GLM
	Quaternions: Further Reading
	Projection
	Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Topics
	View Volume
	Projection Matrix
	Perspective View Volume
	Perspective View Volume
	Perspective Projection Matrix
	Perspective Projection Matrix
	Canonical View Volume
	Viewport Transformation
	Lecture Overview
	Complete Vertex Transformation
	Complete Vertex Transformation
	Complete Vertex Transformation
	Complete Vertex Transformation
	Complete Vertex Transformation
	Complete Vertex Transformation
	The Complete Vertex Transformation
	Complete Vertex Transformation in OpenGL
	Complete Vertex Transformation in OpenGL
	Vertex Shader Code

