CSE 167:
Introduction to Computer Graphics Lecture \#4: Coordinate Systems

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2019

Announcements

- This Friday: late grading project I
- Project 2 is on-line
- Due next Friday

Coordinate System

- Given point \mathbf{p} in homogeneous coordinates: $\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right]$
- Coordinates describe the point's 3D position in a coordinate system with basis vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ and origin \mathbf{o} :

Rectangular and Polar Coordinates

National Aeronautics and Space Administration
Rectangular and Polar Coordinates

Point p can be located relative to the origin by Rectangular Coordinates $\left(X_{p}, Y_{p}\right)$ or by Polar Coordinates (r, θ)

$$
\begin{array}{ll}
X_{p}=r \cos (\theta) & r=\operatorname{sqrt}\left(X_{p}^{2}+Y_{p}^{2}\right) \\
Y_{p}=r \sin (\theta) & \theta=\tan ^{-1}\left(Y_{p} / X_{p}\right)
\end{array}
$$

Coordinate Transformation

Original xyzo coordinate system

New uvwq coordinate system

Goal: Find coordinates of $\mathbf{p}_{\mathrm{xyz}}$ in new $\mathbf{u v w q}$ coordinate system

Coordinate Transformation

Express coordinates of xyzo reference frame with respect to uvwq reference frame:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{u} \\
x_{v} \\
x_{w} \\
0
\end{array}\right]
$$

$$
\mathbf{y}=\left[\begin{array}{c}
y_{u} \\
y_{v} \\
y_{w} \\
0
\end{array}\right]
$$

$\mathbf{z}=\left[\begin{array}{c}z_{u} \\ z_{v} \\ z_{w} \\ 0\end{array}\right]$
$\mathbf{o}=\left[\begin{array}{c}o_{u} \\ o_{v} \\ o_{w} \\ 1\end{array}\right]$

Coordinate Transformation

Point \mathbf{p} expressed in new uvwq reference frame:

$$
\mathbf{p}_{u v w}=p_{x}\left[\begin{array}{c}
x_{u} \\
x_{v} \\
x_{w} \\
0
\end{array}\right]+p_{y}\left[\begin{array}{c}
y_{u} \\
y_{v} \\
y_{w} \\
0
\end{array}\right]+p_{z}\left[\begin{array}{c}
z_{u} \\
z_{v} \\
z_{w} \\
0
\end{array}\right]+\left[\begin{array}{c}
o_{u} \\
o_{v} \\
o_{w} \\
1
\end{array}\right]
$$

Coordinate Transformation

Coordinate Transformation

Inverse transformation

- Given point $\mathbf{P}_{\text {urw }}$ w.r.t. reference frame uvwq:
- Coordinates $\mathbf{P}_{\mathrm{xyz}}$ w.r.t. reference frame xyzo are calculated as:

$$
\mathbf{p}_{x y z}=\left[\begin{array}{cccc}
x_{u} & y_{u} & z_{u} & o_{u} \\
x_{v} & y_{v} & z_{v} & o_{v} \\
x_{w} & y_{w} & z_{w} & o_{w} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
p_{u} \\
p_{v} \\
p_{w} \\
1
\end{array}\right]
$$

Lecture Overview

- Coordinate Transformation
- Typical Coordinate Systems

Typical Coordinate Systems

- In computer graphics, we typically use at least three coordinate systems:
, World coordinate system
- Camera coordinate system
, Object coordinate system

World coordinates

World Coordinates

- Common reference frame for all objects in the scene
- No standard for coordinate system orientation
- If there is a ground plane, usually x / y is horizontal and z points up (height)
- Otherwise, x / y is often screen plane, z points out of the screen

World coordinates

Object Coordinates

- Local coordinates in which points and other object geometry are given
- Often origin is in geometric center, on the base, or in a corner of the object
- Depends on how object is generated or used.

Source: http://motivate.maths.org

World coordinates

Object Transformation

- The transformation from object to world coordinates is different for each object.
- Defines placement of object in scene.
- Given by "model matrix" (model-to-world transformation) M.

World coordinates

Camera Coordinate System

- Origin defines center of projection of camera
- $x-y$ plane is parallel to image plane
- z-axis is perpendicular to image plane

Camera Coordinate System

- The Camera Matrix defines the transformation from camera to world coordinates
- Placement of camera in world

World coordinates

Camera Matrix

- Given:
- Center point of projection e

Camera coordinates

World coordinates

Camera Matrix

- Construct $\mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}}, \mathbf{z}_{\mathbf{c}}$

World coordinates

Camera Matrix

- Step I: z-axis

$$
z_{C}=\frac{e-d}{\|e-d\|}
$$

Step 2: x-axis

$$
\boldsymbol{x}_{C}=\frac{\boldsymbol{u} \times \mathbf{z}_{C}}{\left\|\boldsymbol{u} \times \mathbf{z}_{C}\right\|}
$$

- Step 3: y -axis

$$
\boldsymbol{y}_{C}=z_{C} \times \boldsymbol{x}_{C}=\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}
$$

Camera Matrix:

$$
\boldsymbol{C}=\left[\begin{array}{cccc}
\boldsymbol{x}_{C} & \boldsymbol{y}_{C} & \boldsymbol{z}_{C} & \boldsymbol{e} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Transforming Object to Camera Coordinates

- Object to world coordinates: M
- Camera to world coordinates: C
- Point to transform: \mathbf{p}
- Resulting transformation equation: $\mathbf{p}^{\prime}=\mathbf{C}^{-1} \mathbf{M} \mathbf{p}$

World coordinates

Tips for Notation

- Indicate coordinate systems with every point or matrix
- Point: $\mathbf{p o b j e c t}$
- Matrix: Mobject \rightarrow world
- Resulting transformation equation:

$$
\mathbf{P}_{\text {camera }}=\left(\mathbf{C}_{\text {camera } \rightarrow \text { world }}\right)^{-1} \mathbf{M}_{\text {object } \rightarrow \text { world }} \mathbf{P}_{\text {object }}
$$

- In C++ code use similar names:
, Point: p_object or p_obj or p_o
, Matrix: object2world or obj2wld or o2w
- Resulting transformation equation: wld2cam = inverse(cam2wld);
p_cam = p_obj * obj2wld * wld2cam;

Inverse of Camera Matrix

- How to calculate the inverse of camera matrix \mathbf{C}^{-1} ?
- Generic matrix inversion is complex and computeintensive!
- Solution: affine transformation matrices can be inverted more easily
- Observation:
- Camera matrix consists of translation and rotation: $\mathbf{T} \times \mathbf{R}$
- Inverse of rotation: $\mathbf{R}^{-1}=\mathbf{R}^{\top}$
- Inverse of translation: $\mathbf{T}(\mathrm{t})^{-1}=\mathbf{T}(-\mathrm{t})$
- Inverse of camera matrix: $\mathbf{C}^{-1}=\mathbf{R}^{-1} \times \mathbf{T}^{-1}$

Objects in Camera Coordinates

- We have things lined up the way we like them on screen
- x points to the right
- y points up
b -z into the screen (i.e., z points out of the screen)
, Objects to look at are in front of us, i.e., have negative z values
- But objects are still in 3D
- Next step: project scene to 2D plane

