CSE 167: Introduction to Computer Graphics Lecture #4: Coordinate Systems

> Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2019

Announcements

- This Friday: late grading project I
- Project 2 is on-line
 - Due next Friday

Coordinate System

- Given point p in homogeneous coordinates:
- Coordinates describe the point's 3D position in a coordinate system with basis vectors x, y, z and origin o:

 $p_y \ p_z$

Rectangular and Polar Coordinates

National Aeronautics and Space Administration

www.nasa.gov m

Coordinate Transformation

New **uvwq** coordinate system

Goal: Find coordinates of \mathbf{p}_{xyz} in new **uvwq** coordinate system

Coordinate Transformation

Express coordinates of **xyzo** reference frame with respect to **uvwq** reference frame:

$$\mathbf{x} = \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} \mathbf{z} = \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} \mathbf{o} = \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix} \mathbf{z}$$

Coordinate Transformation $\mathbf{p}_{xyz}, \mathbf{p}_{uvw}$ $p_y \mathbf{y}$ $p_x \mathbf{x}$ x \mathbf{V} 0 $p_z \mathbf{z}$ u \mathbf{Z} q

Point **p** expressed in new **uvwq** reference frame:

$$\mathbf{p}_{uvw} = p_x \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} + p_y \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} + p_z \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} + \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix} - \cdots$$

Coordinate Transformation

8

Coordinate Transformation

Inverse transformation

- Given point \mathbf{P}_{uvw} w.r.t. reference frame **uvwq**:
 - Coordinates P_{xyz} w.r.t. reference frame xyzo are calculated as:

$$\mathbf{p}_{xyz} = \begin{bmatrix} x_u & y_u & z_u & o_u \\ x_v & y_v & z_v & o_v \\ x_w & y_w & z_w & o_w \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} p_u \\ p_v \\ p_w \\ 1 \end{bmatrix}$$

Lecture Overview

- Coordinate Transformation
- Typical Coordinate Systems

Typical Coordinate Systems

- In computer graphics, we typically use at least three coordinate systems:
 - World coordinate system
 - Camera coordinate system
 - Object coordinate system

World Coordinates

- Common reference frame for all objects in the scene
- No standard for coordinate system orientation
 - If there is a ground plane, usually x/y is horizontal and z points up (height)
 - Otherwise, x/y is often screen plane, z points out of the screen

World coordinates

Object Coordinates

- Local coordinates in which points and other object geometry are given
- Often origin is in geometric center, on the base, or in a corner of the object
 - > Depends on how object is generated or used.

Source: http://motivate.maths.org

World coordinates

Object Transformation

- The transformation from object to world coordinates is different for each object.
- Defines placement of object in scene.
- Given by "model matrix" (model-to-world transformation) **M**.

Camera Coordinate System

- Origin defines center of projection of camera
- x-y plane is parallel to image plane
- z-axis is perpendicular to image plane

Camera Coordinate System

- The Camera Matrix defines the transformation from camera to world coordinates
 - Placement of camera in world

Camera Matrix

Camera Matrix

Construct x_c, y_c, z_c

Camera Matrix

Step I:z-axis
$$z_C = \frac{e-d}{\|e-d\|}$$

Step 2: x-axis
$$x_C = \frac{u \times z_C}{\|u \times z_C\|}$$

Step 3: y-axis
$$y_c = z_c \times x_c = \frac{u}{\|u\|}$$

• Camera Matrix: $C = \begin{bmatrix} x_C & y_C & z_C & e \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Transforming Object to Camera Coordinates

- Object to world coordinates: M
- Camera to world coordinates: C
- Point to transform: p
- Resulting transformation equation: p' = C⁻¹ M p

Tips for Notation

Indicate coordinate systems with every point or matrix

- Point: p_{object}
- Matrix: $\mathbf{M}_{object \rightarrow world}$

Resulting transformation equation:

- $\mathbf{p}_{camera} = (\mathbf{C}_{camera \rightarrow world})^{-1} \mathbf{M}_{object \rightarrow world} \mathbf{p}_{object}$
- In C++ code use similar names:
 - Point:p_object or p_obj or p_o
 - Matrix: object2world or obj2wld or o2w

> Resulting transformation equation: wld2cam = inverse(cam2wld); p_cam = p_obj * obj2wld * wld2cam;

Inverse of Camera Matrix

- ▶ How to calculate the inverse of camera matrix C⁻¹?
- Generic matrix inversion is complex and computeintensive!
- Solution: affine transformation matrices can be inverted more easily
- Observation:
 - Camera matrix consists of translation and rotation: $\mathbf{T} \times \mathbf{R}$
- Inverse of rotation: $\mathbf{R}^{-1} = \mathbf{R}^{\top}$
- Inverse of translation: T(t)⁻¹ = T(-t)
- Inverse of camera matrix: $C^{-1} = R^{-1} \times T^{-1}$

Objects in Camera Coordinates

- We have things lined up the way we like them on screen
 - **x** points to the right
 - **y** points up
 - -z into the screen (i.e., z points out of the screen)
 - Objects to look at are in front of us, i.e., have negative z values
- But objects are still in 3D
- Next step: project scene to 2D plane