CSE 165: 3D User Interaction

Lecture #15:

3D UI Design Part 2

Announcements

- Homework 4 due tomorrow
- Homework 5 to go on-line Saturday
- Input devices can be returned
 - this Friday
 - o in office hour Tue 1:30pm
 - after final presentation
 - o any time I'm in the office
- WAVE tour March 8th after paper presentations

3DUI Design

- Two main strategies
 - Designing for humans
 - Match design to human strengths
 - Inventing 3D interaction techniques
 - Creative exploration of 3D Uls

Designing for Humans - Feedback

- Feedback is critical to usable 3D interfaces
 - User feedback is any information conveyed to the user to help understand
 - system state
 - result of operation
 - status of task
- Feedback control mechanism
 - Example: turning a knob produces feedback by
 - External sources: the knob
 - Internal sources: user's body
- Want to have appropriate feedback levels
- Ensure compliance (agreement) between different levels/types of feedback

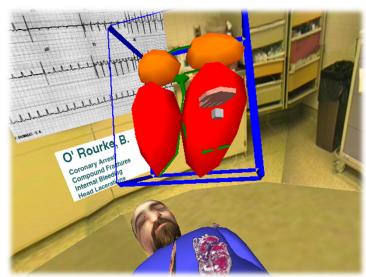
Designing for Humans – Feedback in Multiple Dimensions

- Sensory dimensions
 - Visual, auditory, tactile, olfactory
 - Proprioceptive: relative position of neighboring parts of the body
 - Kinesthetic: bodily motion
- Want to try to give multi-dimensional feedback
 - Can be difficult due to technology (e.g., haptic devices)
 - Sensory feedback substitution
 - Example: visual/audio cues compensate for missing haptic feedback
- System-based feedback
 - Reactive from sensory dimensions
 - Instrumental generated by devices
 - Operational changes in virtual world

Designing for Humans – Compliance

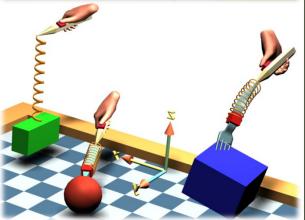
- Main principle in design feedback
- Want different feedback dimensions in sync
 - Maintain spatial and temporal correspondence between multiple feedback dimensions
- Feedback displacement is bad!
 - Example: hand and virtual object move in different directions

Designing for Humans – Spatial Compliance


- Directional compliance virtual object should move in the same direction as manipulated by input device
- Nulling compliance when user returns device to initial pose, virtual object returns to corresponding initial pose
- Instrumental and operational feedback also require spatial compliance
 - Example: real and virtual hand should be aligned

Designing for Humans – Temporal Compliance

- Latency typical problem
 - Temporal delay between user input and sensory feedback
 - Incompliance with internal feedback
- Variable latency can be even more problematic
- Solutions?
 - Reduce scene complexity
 - Faster hardware
 - Predictive tracking


Designing for Humans – Feedback Substitution

- Cannot always support all sensory feedback dimensions
- Typical approach is to substitute

Highlighting object about to be selected

Spring Manipulation Tools, Michal Koutek, TU Delft

Designing for Humans – Passive Haptics

- Match shape and appearance of virtual object with physical prop
 - User both sees and feels
- Advantages
 - Inexpensive haptic/tactile feedback
 - Establish perceptual frame of reference
- Disadvantages
 - Scalability
 - Performance improvements have not yet been measured

Designing for Humans – Constraints

- Constraints:
 - Are a relation between variables that must be satisfied
 - Example: a line should stay horizontal
 - Define geometrical coherence of scene
 - Can make interaction simpler and improve accuracy

Designing for Humans – Constraint Types

- Physically realistic constraints
 - Collision detection and avoidance
 - Gravity
 - Application dependent
- DOF reduction
 - Simplify interaction (example: constrain travel to ground)
- Dynamic alignment tools
 - Grids and snapping, guiding surfaces
- Intelligent constraints
 - Deal with semantics
 - Example: lamp can only stand on horizontal surfaces

Designing for Humans – Two Handed Control

- Also known as bimanual input
- Transfer everyday manipulation experiences to 3DUI
- Can increase user performance on certain tasks
- Active topic of research

Designing for Humans – Guiard's Framework

- Tasks are
 - Unimanual: throwing darts
 - Bimanual symmetric
 - Synchronous: pulling a rope
 - Asynchronous: typing on keyboard
 - Bimanual asymmetric (cooperative): holding a cell phone with one hand, operating it with the other
- Division of labor (hand roles) for asymmetric scenario:
 - Nondominant hand dynamically adjusts spatial frame of reference for dominant hand
 - Dominant hand produces precision movements, nondominant hand performs gross manipulation
 - Manipulation is initiated by nondominant hand

Designing for Different User Groups

- Age
- Prior 3DUI experience
- Physical characteristics: arm length, etc.
- Perceptual, cognitive, motor capabilities
 - Color recognition
 - Stereo vision
 - Spatial abilities

Designing for User Comfort

- Weight of equipment
- Keep users in proper physical space
- Hygiene and public installations
- Keep sessions short (30-45min max) to prevent sickness, fatigue