
CSE 167:
Introduction to Computer Graphics
Lecture #9: Visibility

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2018

Announcements
 Midterm
 Scores are on TritonEd
 Exams to be returned and discussed this Thursday in class

 Discussion tomorrow
 Tips for project 3

 Project 3 due this Friday at 2pm
 Grading in CSE basement labs B260 and B270
 Upload code to TritonEd by 2pm
 Grading order managed by Autograder
 Vote for best robot: instructions on Piazza

2

Topics
 Visibility Culling
 Occlusion

3

Visibility Culling

Visibility Culling
 Goal:

Discard geometry that does not need to be drawn to
speed up rendering

 Types of culling:
 View frustum culling
 Small object culling
 Degenerate culling
 Backface culling
 Occlusion culling

5

View Frustum Culling
 Triangles outside of view frustum are off-screen

6

Images: SGI OpenGL Optimizer Programmer's Guide

Videos
 Rendering Optimizations - Frustum Culling
 http://www.youtube.com/watch?v=kvVHp9wMAO8

 View Frustum Culling Demo
 http://www.youtube.com/watch?v=bJrYTBGpwic

7

http://www.youtube.com/watch?v=kvVHp9wMAO8
http://www.youtube.com/watch?v=bJrYTBGpwic

Bounding Volumes
 Simple shape that

completely
encloses an object

 Generally a box or
sphere
 Easier to calculate culling for

spheres
 Easier to calculate tight fits

for boxes
 Intersect bounding

volume with view frustum
instead of each primitive

8

Bounding Box
 How to cull objects consisting of may polygons?
 Cull bounding box
 Rectangular box, parallel to object space coordinate planes
 Box is smallest box containing the entire object

9

Image: SGI OpenGL Optimizer Programmer's Guide

View Frustum Culling
 Frustum defined by 6 planes
 Each plane divides space into

“outside”, “inside”
 Check each object against

each plane
 Outside, inside, intersecting

 If “outside” of at least one plane
 Outside the frustum

 If “inside” all planes
 Inside the frustum

 Else partly inside and partly out
View frustum

10

•p

• x

Distance to Plane
 A plane is described by a point p on the plane and a unit

normal n
 Find the (perpendicular) distance from point x to the

plane

n

11

•p

• x

Distance to Plane
 The distance is the length of the projection of x-p

onto n

dist = x − p()

⋅
n

n x−p

12

 The distance has a sign
 positive on the side of the plane the normal points to
 negative on the opposite side
 zero exactly on the plane

 Divides 3D space into two infinite half-spaces

•p

Distance to Plane

dist(x) = x − p()

⋅
n

n Positive

Negative
13

Distance to Plane
 Simplification

 d is independent of x
 d is distance from the origin to the plane
 We can represent a plane with just d and n

14

Frustum With Signed Planes

 Normal of each plane points outside
 “outside” means positive distance
 “inside” means negative distance

15

 For sphere with radius r and origin x, test the distance to
the origin, and see if it is beyond the radius

 Three cases:
 dist(x)>r

 completely above

 dist(x)<-r
 completely below

 -r<dist(x)<r
 intersects

Test Sphere and Plane

•

n Positive

Negative

16

Culling Summary
 Transform view frustum plane equations in camera space.
 Pre-compute the normal n and value d for each of the six

planes.
 Given a sphere with center x and radius r in camera space.
 For each plane:
 if dist(x) > r: sphere is outside! (no need to continue loop)
 add 1 to count if dist(x)<-r

 If we made it through the loop, check the count:
 if the count is 6, the sphere is completely inside
 otherwise the sphere intersects the frustum
 (can use a flag instead of a count)

17

 Want to be able to cull the whole group quickly
 But if the group is partly in and partly out, want to be

able to cull individual objects

Culling Groups of Objects

18

Hierarchical Bounding Volumes
 Given hierarchy of objects
 Bounding volume of each node encloses the bounding

volumes of all its children
 Start by testing the outermost bounding volume
 If it is entirely outside, don’t draw the group at all
 If it is entirely inside, draw the whole group

19

 If the bounding volume is partly inside and partly
outside
 Test each child’s bounding volume individually
 If the child is in, draw it; if it’s out cull it; if it’s partly in and

partly out, recurse.
 If recursion reaches a leaf node, draw it normally

Hierarchical Culling

20

Video
 Math for Game Developers - Frustum Culling
 http://www.youtube.com/watch?v=4p-E_31XOPM

21

http://www.youtube.com/watch?v=4p-E_31XOPM

Small Object Culling
 Object projects to less than a specified size
 Cull objects whose screen-space bounding box is less than a

threshold number of pixels

22

Degenerate Culling
 Degenerate triangle has no area
 Normal n=0
 All vertices in a straight line
 All vertices in the same place

23

Source: Computer Methods in Applied Mechanics
and Engineering, Volume 194, Issues 48–49

Backface Culling
 Consider triangles as “one-sided”, i.e., only visible from

the “front”
 Closed objects
 If the “back” of the triangle is facing away from the camera, it is

not visible
 Gain efficiency by not drawing it (culling)
 Roughly 50% of triangles in a scene are back facing

24

Backface Culling
 Convention:

Triangle is front facing if vertices are ordered
counterclockwise

p0

p1

p2

p0

p1

p2Front-facing Back-facing

25

Backface Culling
 Compute triangle normal after projection (homogeneous

division)

 Third component of n negative: front-facing, otherwise
back-facing
 Remember: projection matrix is such that homogeneous

division flips sign of third component

26

OpenGL
 OpenGL allows one- or two-sided triangles
 One-sided triangles:

glEnable(GL_CULL_FACE); glCullFace(GL_BACK)
 Two-sided triangles (no backface culling):

glDisable(GL_CULL_FACE)

27

glDisable(GL_CULL_FACE); glEnable(GL_CULL_FACE);

Occlusion Culling
 Geometry hidden behind occluder cannot be seen
 Many complex algorithms exist to identify occluded geometry

28

Images: SGI OpenGL Optimizer Programmer's Guide

Video
 Umbra 3 Occlusion Culling explained
 http://www.youtube.com/watch?v=5h4QgDBwQhc

29

http://www.youtube.com/watch?v=5h4QgDBwQhc

Level-of-Detail Techniques
 Don’t draw objects smaller than a threshold
 Small feature culling
 Popping artifacts

 Replace 3D objects by 2D impostors
 Textured planes representing the objects

 Adapt triangle count to projected size

Impostor generation

Original vs. impostor

30
Size dependent mesh reduction

(Data: Stanford Armadillo)

Occlusion

Occlusion

• At each pixel, we need to
determine which triangle
is visible

32

Painter’s Algorithm
 Paint from back to front
 Need to sort geometry according to depth
 Every new pixel always paints over previous pixel in frame

buffer
 May need to split triangles if they intersect

 Intuitive, but outdated algorithm - created when memory was
expensive

 Needed for translucent geometry even today
33

Z-Buffering
 Store z-value for each pixel
 Depth test
 Initialize z-buffer with farthest z value
 During rasterization, compare stored value to new value
 Update pixel only if new value is smaller

setpixel(int x, int y, color c, float z)
if(z<zbuffer(x,y)) then
zbuffer(x,y) = z
color(x,y) = c

 z-buffer is dedicated memory reserved in GPU
memory

 Depth test is performed by GPU very fast
34

Z-Buffering in OpenGL
 In OpenGL applications:
 Ask for a depth buffer when you create your GLFW window.

 glfwOpenWindow(512, 512, 8, 8, 8, 0, 16, 0, GLFW_WINDOW)

 Place a call to glEnable(GL_DEPTH_TEST) in your program's
initialization routine.

 Ensure that your zNear and zFar clipping planes are set
correctly (glm::perspective(fovy, aspect, zNear, zFar)) and in a
way that provides adequate depth buffer precision.

 Pass GL_DEPTH_BUFFER_BIT as a parameter to glClear.

 Note that the z buffer is non-linear: it uses smaller depth
bins in the foreground, larger ones further from the
camera.

35

Z-Buffer Fighting

 Problem: polygons which are close together don’t get rendered
correctly. Errors change with camera perspective flicker

 Cause: differently colored fragments from different polygons
are being rasterized to same pixel and depth not clear
which is in front of which

 Solutions:
 move surfaces farther apart, so that fragments rasterize into different

depth bins
 bring near and far planes closer together
 use a higher precision depth buffer. Note that OpenGL often defaults to

16 bit even if your graphics card supports 24 bit or 32 bit depth buffers
36

Translucent Geometry
 Need to depth sort translucent geometry and render

with Painter’s Algorithm (back to front)
 Problem: incorrect blending with cyclically overlapping

geometry

 Solutions:
 Back to front rendering of translucent geometry (Painter’s

Algorithm), after rendering opaque geometry
 Does not always work correctly: programmer has to weigh rendering

correctness against computational effort

 Theoretically: need to store multiple depth and color values
per pixel (not practical in real-time graphics)

37

	CSE 167:�Introduction to Computer Graphics�Lecture #9: Visibility
	Announcements
	Topics
	Visibility Culling
	Visibility Culling
	View Frustum Culling
	Videos
	Bounding Volumes
	Bounding Box
	View Frustum Culling
	Distance to Plane
	Distance to Plane
	Distance to Plane
	Distance to Plane
	Frustum With Signed Planes
	Test Sphere and Plane
	Culling Summary
	Culling Groups of Objects
	Hierarchical Bounding Volumes
	Hierarchical Culling
	Video
	Small Object Culling
	Degenerate Culling
	Backface Culling
	Backface Culling
	Backface Culling
	OpenGL
	Occlusion Culling
	Video
	Level-of-Detail Techniques
	Occlusion
	Occlusion
	Painter’s Algorithm
	Z-Buffering
	Z-Buffering in OpenGL
	Z-Buffer Fighting
	Translucent Geometry

