
CSE 190
VR Technologies

Spring 2021

Guowei Yang

Discussion 5

ANNOUNCEMENTS

● Homework 3 Released

○ Due Sunday (5/16)

○ Explore levels of VR immersion

● Extra-Extra Credit Opportunity

○ Fill Survey by Friday (5/7)

○ 2pts Extra Credit towards HW 2

AGENDA

● Homework 3 Objectives

● Components

● Getting Started

● Debugging Tool

OBJECTIVES

Objectives

● Explore different level of immersion of VR

● Slowly taking away key components of VR environment

● Understand how FOV, tracking & rendering latency, stereo

images would affect overall VR experience

COMPONENTS

Main Components

● Mono/Stereo Skybox

● Shrinking FOV

● Stereo Modes

● Head Tracking

● Tracking Lag

● Rendering Lag

● Extra Credit

Mono/Stereo Skybox

● A Skybox is a 6-sided cube that is drawn behind all graphics in the game.
● Used as 360 degree background
● Create new Material Asset -> Skybox

● By default, skybox is rendered monoscopic (both eyes sees same image)
● Fine for far-away objects, but not ideal for near objects
● A better skybox: render different images for different eyes
● Stereo images are provided

Mono/Stereo Skybox
Requirements for Homework 3:

● Create a skybox that acts as the background for the 3D environment
● Press “X” button to cycle through THREE different modes

○ Create a scene with a cube and render both cube and skybox rendered in stereo
○ No cube, just skybox rendered in stereo
○ No cube, just skybox rendered in mono

Shrinking FOV

● Reduce the field of view of both eyes to half of the original size
● Rendering a black frame on top of your left and right eye views, with the center being

transparent

Stereo Modes

● Create a 3D Scene
● Cycle among different modes with “A” button

○ 3D Stereo
○ Monoscopic
○ Left Eye Only (Right eye black)
○ Right Eye Only (Left eye black)
○ Inverted Stereo (Left camera renders into right eye)

Requirements for Homework 3:

Head Tracking

Requirements for Homework 3:

● Create a 3D Scene
● Cycle among different modes with “B” button

○ Regular head tracking (both rotation and position is tracked)
○ Orientation Only (position is frozen)
○ Position Only (rotation is frozen)
○ Tracking disabled

● Unity has built-in support for this

Tracking Lag
Requirements for Homework 3:

● Create a 3D Scene with a sphere following the dominant hand’s controller position
● Obtain current camera matrix, and replace it with the camera matrix for the next scene
● Save the camera matrices in a ring buffer with 30 entries
● Press right index trigger button to add one frame of tracking lag
● Press left index trigger to reduce one frame of tracking lag
● Display the tracking lag in frame count # on screen.

Rendering Lag
Requirements for Homework 3:

● Explore what it would look like if rendering a frame took more than 1/90th of a second
● Setup similar to tracking lag
● Right middle finger trigger to add one frame as rendering lag (render the same, duplicate frame)
● Left middle finger trigger to reduce one frame for rendering lag

Extra Credit
DIY 3D Experiences!

● Stereo Image Viewer
○ Use a camera or your smartphone to take two images of an identical scene
○ Two camera positions should be ~65mm apart from each other
○ Use the provided custom shader to render the images to each eyes

● Custom Skybox
○ Create your own panorama images for both eyes by using some smartphone apps
○ Convert to cubemaps

● Super Rotation
○ Magnify the rotation movement tracking of the head

● Smoother Controller Tracking
○ Use moving average as the pose parameters for the controllers

GETTING STARTED

Creating Stereo Skybox
● Creating a stereo skybox requires two cubemaps

○ One for left eye image and another for right eye image
○ Assets -> Create -> Legacy -> Cubemap
○ Set face size to be 2048, images are provided on the course website
○ Create two of such cubemaps, one for left image, one for right image

Creating Stereo Skybox
● Create a Skybox Material

○ Assets -> Create -> Material
○ Import the SkyboxStereo material downloaded

from the course website
● Add the left and right cubemap you have created

from the last step
● Drag this newly created skybox into the scene.

Change Head Tracking Mode
● Select the OVRCameraRig from OVRPlayerController

○ In inspector view, under OVR Manager

○ Those booleans can either be set here, or dynamically in code
■ Inside OVRManager.cs,find

● public bool usePositionTracking

● public bool useRotationTracking

■ Dynamically modify those values in your script

Stereo Mode & IOD (IPD)
● For these particular tasks, we need some hack since Oculus Integration doesn’t offer the flexibility

to render images only to left eye or right eye, nor to render inverted stereo
● Need to disable OVRCameraRig’s anchor cameras and create your own custom camera rig

● Useful functions provided in the file shown on the website
● Create two cameras in hierarchy and have them parented
● Select target eye

Stereo Mode & IOD (IPD)

DEBUGGING TOOL

Debugging Tool
● Debugging is trickier since app is running on VR and there isn’t a terminal window on your VR
● Cannot see debug logs inside your VR interface
● Useful tool provided by Android Developer Support: ADB (Android Debug Bridge)

○ Obtain Android Debug Bridge on your machine:
■ https://www.xda-developers.com/install-adb-windows-macos-linux

○ In your terminal, navigate to the directory named “platform-tools” and use the command
“./adb device”
■ If everything is setup correctly, you should be able to see your Oculus Quest Serial #
■
■
■
■ ./adb help provides a list of available commands you can execute
■ ./adb logcat outputs all the log output from your VR (make sure VR is always

tethered to your machine)
● https://developer.oculus.com/documentation/unity/unity-enable-device

https://www.xda-developers.com/install-adb-windows-macos-linux
https://developer.oculus.com/documentation/unity/unity-enable-device

QUESTIONS?

