CSE 190: 3D User Interaction

Lecture #15: 3D UI Design Jürgen P. Schulze, Ph.D.

Announcements

- Homework assignment #4 due
 Friday, March 8th at 1pm in Sequoia lab 142
 - Grading starts at 12:30
- CAPE
 - Web site open March 4 to March 17
- Please return borrowed webcams, Hydras, Kinects by end of quarter
 - After homework presentation
 - After class
 - During my office hour (Mon 2pm)
 - Drop off in my office leave note with your name,
 I will send confirmation email

Paper Presentations Next Lecture

- Bryan: Impossible Spaces: Maximizing Natural Walking in Virtual Environments with Self-Overlapping Architecture
- Arick: TBD

Paper Presentations Today

- Kevin: Piivert: Percussion-based interaction for immersive virtual environments
- Nico: Increasing Agent Physicality to Raise Social Presence and Elicit Realistic Behavior
- Justina: Breaking the status quo: Improving 3D gesture recognition with spatially convenient input devices

3D UI Design Strategies

Thus far...

- 3DUI hardware
 - Output
 - Input
- Universal 3DUI tasks
 - Selection
 - Manipulation
 - Navigation
 - System control
 - Symbolic input

But: The combination of techniques and devices alone does not guarantee an enjoyable experience!

3DUI Design

- Microlevel: implementation
 - 3D interaction programming: hard!
 - Testing: difficult and hard to automate
 - Tweaking UI parameters: important but time consuming
- Macrolevel: guidelines
 - Strengths and limitations of human psychology/physiology
 - Common sense
 - Rules of thumb
 - Example: people naturally use 2 hands, so using 2 hands in a 3D UI might improve usability/performance

3DUI Design

- Two main strategies
 - Designing for humans
 - Match design to human strengths
 - Inventing 3D interaction techniques
 - Creative exploration of 3D Uls

Designing for Humans - Feedback

- Feedback is critical to usable 3D interfaces
 - User feedback is any information conveyed to the user to help understand
 - system state
 - result of operation
 - status of task
- Feedback control mechanism
 - Example: turning a knob produces feedback by
 - External sources: the knob
 - Internal sources: user's body
- Want to have appropriate feedback levels
- Ensure compliance (agreement) between different levels/types of feedback

Designing for Humans – Feedback in Multiple Dimensions

- Sensory dimensions
 - Visual, auditory, tactile, olfactory
 - Proprioceptive: relative position of neighboring parts of the body
 - Kinesthetic: bodily motion
- Want to try to give multi-dimensional feedback
 - Can be difficult due to technology (e.g., haptic devices)
 - Sensory feedback substitution
 - Example: visual/audio cues compensate for missing haptic feedback
- System-based feedback
 - Reactive from sensory dimensions
 - Instrumental generated by devices
 - Operational changes in virtual world

Designing for Humans - Compliance

- Main principle in design feedback
- Want different feedback dimensions in sync
 - Maintain spatial and temporal correspondence between multiple feedback dimensions
- Feedback displacement is bad!
 - Example: hand and virtual object move in different directions

Designing for Humans – Spatial Compliance

- Directional compliance virtual object should move in the same direction as manipulated by input device
- Nulling compliance when user returns device to initial pose, virtual object returns to corresponding initial pose
- Instrumental and operational feedback also require spatial compliance
 - Example: real and virtual hand should be aligned

Designing for Humans – Temporal Compliance

- Latency typical problem
 - Temporal delay between user input and sensory feedback
 - Incompliance with internal feedback
- Variable latency can be even more problematic
- Solutions?
 - Reduce scene complexity
 - Faster hardware
 - Predictive tracking