
CSE 190
Discussion 7

Final Project:
Collaborative VR

Final Project: Collaborative VR

● The assignment is up on the webpage: http://ivl.calit2.net/wiki/index.php/Project4S18

● Due on Tuesday of the Finals week (June 12th) at 3:00pm

● You will create a networked VR application

● Some features you need to implement:
○ Make use of 6 dof head tracking
○ Make use of touch controllers
○ Two users should be able to see each other’s head and hand position.
○ Come up with an application that requires collaborative work between two users.
○ Make use of audio
○ Create at least one 3D object on your own.
○ Details in the assignment page.

http://ivl.calit2.net/wiki/index.php/Project4S18

Networking

● You have a few options for which networking libraries you want to use.

● Sockets (Recommended)
○ More low level, sending bytes over the network
○ Sample code here:

https://www.codeproject.com/Articles/412511/Simple-client-server-network-using-Cplusplus-a
nd-W

● RPC
○ Call functions over the network
○ Documentation here: http://rpclib.net/

● You can use other, more extensive libraries for networking online, but it will be up to you

to figure out how they work.

https://www.codeproject.com/Articles/412511/Simple-client-server-network-using-Cplusplus-and-W
https://www.codeproject.com/Articles/412511/Simple-client-server-network-using-Cplusplus-and-W
http://rpclib.net/

Sockets

Image from CSE 124

Sockets Sample

● All the code for the loop above is within the example listed previously

● How the sample basically works:
○ You serialize data into one large array and send it over the network
○ The receiver parses it based off the packet headers you create

● Quick Networking Crash Course:
○ 127.0.0.1 is the localhost, use it to test on the same computer
○ To find your local IP, open up command prompt, and run ipconfig , and look for the interface

that looks correct. Then look for your IPv4 address.
○ Make sure you use different ports, or the second person who tries to use it will get an error
○ Ports numbers <1024 are reserved

Network Architecture

● There is a lot of flexibility in how you can create your network architecture

● Important things to keep in mind:
○ The clients should run at 90 fps, but the server can run at 30 ticks per second

■ Keep your camera calculations on the client, only send over the scene graph
○ Having the server run at a constant rate might make some calculations easier.
○ Don’t try to do everything at once. First make sure you can get communication over the network,

then integrate it with your code.

● I will go over a simple Server-Client architecture

Server-Client

● The server is a simulation of the virtual world

● The client is a window into the virtual world

Server

● Have the server run at a constant rate to simplify things. 30 tick might be a good starting

point

● The server will maintain data structures for all the objects in the simulation
○ A scene graph might be good here

● The server will run a loop consisting of something similar to the following
○ Receive input from clients
○ Update the state of the simulation (collisions, physics, etc)
○ Send state to clients
○ Wait until next tick

● Having a constant tick rate simplifies how the server works and limits the work the server

puts on the client

Client

● Client maintains local copy of state

● Client loop runs as fast as possible
○ Receive messages from server
○ Render world
○ Collect input events to send to server

● The client does not act on input directly, the server will do the update, and send the world

state back to the client

● Having an authoritative server helps avoid conflicts

Events

● The server needs to send object data to the clients

● Send events between the Server and Client.
○ Sending “fire” events from client to server
○ Sending “hit” events from server to client

● Adds in indirection between button presses and actions

Architecture Adjustments

● Since our case is very simple, with only two users, you can simplify a lot.

● You can have one of the computers run a combined server/client, and run the server on

another thread, or only do the server update every so often.

● And if your game is simple enough, you could run the server along with the client in the

same program.

● In the end, do whatever makes sense to you.

3D Model Customization

● In this assignment, you need to custom make at least one 3D object by yourself.

● You can scan your model from just pictures using tools like Agisoft Photoscan
○ There is also a 3D scanner in the VR lab that you can try out
○ You can read more about Agisoft Photoscan here

● You can create or pre-process your 3D meshes using tools like Blender or MeshLab

● Make sure your model is optimized enough
○ Because there is network communication involved, models that are too big will results to a

framerate drop.
○ You can use MeshLab to reduce the polygon count of your model.

http://www.agisoft.com/
https://3dscanexpert.com/agisoft-photoscan-photogrammetry-3d-scanning-review/

Model Loading

● When you are creating your model, make sure the model is exported to Wavefront .obj

file or fbx file or files that you are familiar with.

● If you continue using Open Assimp Import Library, check out its supported file formats

here.
○ Common file formats like fbx and obj are supported.
○ Regardless of the file format we imported, the data structure of Assimp stays the same.

https://github.com/assimp/assimp

MTL files

● There are cases that some generated model files come with other supplementary files in

order to store more color, material, and texture information.

● .mtl (Material Library File) is one of them, and it is used to contain material definitions

● You can check if your obj file contains a mtl file definition by
○ Open the obj file as text file and check the headers to find the name of the mtl file, which often has

the same name as the obj file.
○ And you need to place same in the same directory to load them.

● To access loaded materials in assimp:
○ aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];

Texture files

● Some materials might specify some texture files that needs to be used for this material

● For example, in OBJ MTL files, some material can specify a path to the image files, and you

need to make sure those images files are placed in the correct position as specified in the

.mtl file.

● To load these texture images, you can

refer to the Model.cpp example in the

tutorial.

● vector<Texture> loadMaterialTextures()
● unsigned int TextureFromFile()
● These two functions demo how to load the

texture images.

● To find texture coordinates of the mesh:
○ mesh->mTextureCoords[0]

https://learnopengl.com/code_viewer_gh.php?code=includes/learnopengl/model.h

OpenAL: Open Audio Library

Slides link:

https://docs.google.com/presentation/d/1nha9ENV41FhftHJiDlru5kM8vvh3Wr-5MzHVSk6yf

u4/edit?usp=sharing

https://docs.google.com/presentation/d/1nha9ENV41FhftHJiDlru5kM8vvh3Wr-5MzHVSk6yfu4/edit?usp=sharing
https://docs.google.com/presentation/d/1nha9ENV41FhftHJiDlru5kM8vvh3Wr-5MzHVSk6yfu4/edit?usp=sharing

Reference

● Client-Server network using C++ and Winsock:
○ https://www.codeproject.com/Articles/412511/Simple-client-server-network-using-Cplusplus-a

nd-W

● MTL file format explained:

http://paulbourke.net/dataformats/mtl/

● Agisoft Photoscan tutorial:
○ http://www.agisoft.com/pdf/PS_1.1%20-Tutorial%20(BL)%20-%203D-model.pdf

● Agisoft Photoscan Review article:
○ https://3dscanexpert.com/agisoft-photoscan-photogrammetry-3d-scanning-review/

● Assimp usage:
○ Library: https://github.com/assimp/assimp
○ Tutorial and sample codes: https://learnopengl.com/Model-Loading/Assimp

https://www.codeproject.com/Articles/412511/Simple-client-server-network-using-Cplusplus-and-W
https://www.codeproject.com/Articles/412511/Simple-client-server-network-using-Cplusplus-and-W
http://paulbourke.net/dataformats/mtl/
http://www.agisoft.com/pdf/PS_1.1%20-Tutorial%20(BL)%20-%203D-model.pdf
https://3dscanexpert.com/agisoft-photoscan-photogrammetry-3d-scanning-review/
https://github.com/assimp/assimp
https://learnopengl.com/Model-Loading/Assimp

QUESTIONS?

