CSE 167:
 Introduction to Computer Graphics Lecture \#11: Performance Optimization

Jürgen P. Schulze, Ph.D.
University of California, San Diego Spring Quarter 2015

Announcements

- Homework 5 due tomorrow at Ipm
- Homework 6 due next Friday

Lecture Overview

- Performance Optimization
- Culling
- Level of Detail Techniques

Culling

- Goal:

Discard geometry that does not need to be drawn to speed up rendering

- Types of culling:
, View frustum culling
- Occlusion culling
- Small object culling
- Backface culling
- Degenerate culling

Occlusion Culling

- Geometry hidden behind occluder cannot be seen
- Many complex algorithms exist to identify occluded geometry

Images: SGI OpenGL Optimizer Programmer's Guide

Video

- Umbra 3 Occlusion Culling explained
- http://www.youtube.com/watch?v=5h4QgDBwQhc

Small Object Culling

- Object projects to less than a specified size
- Cull objects whose screen-space bounding box is less than a threshold number of pixels

Backface Culling

- Consider triangles as "one-sided", i.e., only visible from the "front"
- Closed objects
" If the "back" of the triangle is facing the camera, it is not visible
- Gain efficiency by not drawing it (culling)
- Roughly 50% of triangles in a scene are back facing

Backface Culling

- Convention:

Triangle is front facing if vertices are ordered counterclockwise

- OpenGL allows one- or two-sided triangles
- One-sided triangles:
gIEnable(GL_CULL_FACE); gICullFace(GL_BACK)
- Two-sided triangles (no backface culling): gIDisable(GL_CULL_FACE)

Backface Culling

- Compute triangle normal after projection (homogeneous division)

$$
\mathbf{n}=\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \times\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right)
$$

- Third component of \mathbf{n} negative: front-facing, otherwise back-facing
- Remember: projection matrix is such that homogeneous division flips sign of third component

Degenerate Culling

- Degenerate triangle has no area
- Vertices lie in a straight line
- Vertices at the exact same place
- Normal $\mathbf{n}=0$

Source: Computer Methods in Applied Mechanics and Engineering, Volume 194, Issues 48-49

Rendering Pipeline

Level-of-Detail Techniques

- Don't draw objects smaller than a threshold
- Small feature culling
- Popping artifacts
- Replace 3D objects by 2D impostors
- Textured planes representing the objects

- Adapt triangle count to projected size

Original vs. impostor

Size dependent mesh reduction (Data: Stanford Armadillo)

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Modeling

- Creating 3D objects
- How to construct complex surfaces?
- Goal
- Specify objects with control points
- Objects should be visually pleasing (smooth)
- Start with curves, then generalize to surfaces
- Next: What can curves be used for?

Curves

- Surface of revolution

Curves

- Extruded/swept surfaces

Curves

- Animation
> Provide a "track" for objects
- Use as camera path

Video

- Bezier Curves

- http://www.youtube.com/watch?v=hIDYJNEiYvU

Curves

- Can be generalized to surface patches

Curve Representation

- Specify many points along a curve, connect with lines?
- Difficult to get precise, smooth results across magnification levels
- Large storage and CPU requirements
- How many points are enough?
- Specify a curve using a small number of "control points"
- Known as a spline curve or just spline

Spline: Definition

- Wikipedia:
- Term comes from flexible spline devices used by shipbuilders and draftsmen to draw smooth shapes.
- Spline consists of a long strip fixed in position at a number of points that relaxes to form a smooth curve passing through those points.

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Interpolating Control Points

- "Interpolating" means that curve goes through all control points
- Seems most intuitive
- Surprisingly, not usually the best choice
- Hard to predict behavior
- Hard to get aesthetically pleasing curves

Approximating Control Points

- Curve is "influenced" by control points
- Various types
- Most common: polynomial functions
- Bézier spline (our focus)
- B-spline (generalization of Bézier spline)
- NURBS (Non Uniform Rational Basis Spline): used in CAD tools

Mathematical Definition

- A vector valued function of one variable $\mathbf{x}(t)$
- Given t, compute a 3D point $\mathbf{x}=(x, y, z)$
- Could be interpreted as three functions: $x(t), y(t), \mathrm{z}(t)$
- Parameter t"moves a point along the curve"

Tangent Vector

- Derivative $\mathbf{x}^{\prime}(t)=\frac{d \mathbf{x}}{d t}=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$
- Vector x' points in direction of movement
- Length corresponds to speed

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Polynomial Functions

- Linear:

$$
f(t)=a t+b
$$

(${ }^{\text {st }}$ order)

- Quadratic: $f(t)=a t^{2}+b t+c$ (2 ${ }^{\text {nd }}$ order)

- Cubic: $\quad f(t)=a t^{3}+b t^{2}+c t+d$ (3rd order)

Polynomial Curves

- Linear $\mathbf{x}(t)=\mathbf{a} t+\mathbf{b}$

$$
\mathbf{x}=(x, y, z), \mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right), \mathbf{b}=\left(b_{x}, b_{y}, b_{z}\right)
$$

- Evaluated as:

$$
\begin{aligned}
& x(t)=a_{x} t+b_{x} \\
& y(t)=a_{y} t+b_{y} \\
& z(t)=a_{z} t+b_{z}
\end{aligned}
$$

Polynomial Curves

Quadratic: $\quad \mathbf{x}(t)=\mathbf{a} t^{2}+\mathbf{b} t+\mathbf{c}$ (2 ${ }^{\text {nd }}$ order)

- Cubic: $\mathbf{x}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}$ (3 ${ }^{\text {rd }}$ order)

- We usually define the curve for $0 \leq t \leq$ I

Control Points

- Polynomial coefficients a, b, c, d can be interpreted as control points
- Remember: a, b, c, d have x, y, z components each
- Unfortunately, they do not intuitively describe the shape of the curve
- Goal: intuitive control points

Control Points

- How many control points?
- Two points define a line (${ }^{\text {st }}$ order)
- Three points define a quadratic curve ($2^{\text {nd }}$ order)
- Four points define a cubic curve (3 rd order)
- $k+1$ points define a k-order curve
- Let's start with a line...

First Order Curve

- Based on linear interpolation (LERP)
- Weighted average between two values
" "Value" could be a number, vector, color, ...
- Interpolate between points $\mathbf{p}_{\mathbf{0}}$ and $\mathbf{p}_{\mathbf{1}}$ with parameter t
- Defines a "curve" that is straight (first-order spline)
- $t=0$ corresponds to $\mathbf{p}_{\mathbf{0}}$
p $t=1$ corresponds to $\mathbf{p}_{\mathbf{1}}$
- $t=0.5$ corresponds to midpoint

Linear Interpolation

Three equivalent ways to write it

- Expose different properties

1. Regroup for points \mathbf{p}

$$
\mathbf{x}(t)=\mathbf{p}_{0}(1-t)+\mathbf{p}_{1} t
$$

2. Regroup for t

$$
\mathbf{x}(t)=\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0}
$$

3. Matrix form

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
\mathbf{p}_{0} & \mathbf{p}_{1}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]
$$

Weighted Average

$$
\begin{aligned}
\mathbf{x}(t) & =(1-t) \mathbf{p}_{0}+\quad(t) \mathbf{p}_{1} \\
& =B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}, \text { where } B_{0}(t)=1-t \text { and } B_{1}(t)=t
\end{aligned}
$$

- Weights are a function of t
- Sum is always I, for any value of t
- Also known as blending functions

