#### CSE 167 – Fall 2019

Discussion 7

# Cubic Polynomial Form

Start with Bernstein form:

$$\mathbf{x}(t) = \left(-t^{3} + 3t^{2} - 3t + 1\right)\mathbf{p}_{0} + \left(3t^{3} - 6t^{2} + 3t\right)\mathbf{p}_{1} + \left(-3t^{3} + 3t^{2}\right)\mathbf{p}_{2} + \left(t^{3}\right)\mathbf{p}_{3}$$

$$\mathbf{x}(t) = (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3)t_3 + (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2)t_2 + (-3\mathbf{p}_0 + 3\mathbf{p}_1)t + (\mathbf{p}_0)\mathbf{1}$$

$$\mathbf{x}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$
$$\mathbf{a} = (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3)$$
$$\mathbf{b} = (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2)$$
$$\mathbf{c} = (-3\mathbf{p}_0 + 3\mathbf{p}_1)$$
$$\mathbf{d} = (\mathbf{p}_0)$$

#### Good for fast evaluation

- Precompute constant coefficients (a,b,c,d)
- Can also write as a matrix, which is even faster



### **Global Parameterization**

- Given N curve segments  $\mathbf{x}_0(t)$ ,  $\mathbf{x}_1(t)$ , ...,  $\mathbf{x}_{N-1}(t)$
- Each is parameterized for t from 0 to 1
- Define a piecewise curve
  - Global parameter u from 0 to N

$$\mathbf{x}(u) = \begin{cases} \mathbf{x}_{0}(u), & 0 \le u \le 1 \\ \mathbf{x}_{1}(u-1), & 1 \le u \le 2 \\ \vdots & \vdots \\ | (\mathbf{x}_{N-1}(u-(N-1)), & N-1 \le u \le N \end{cases}$$

 $\mathbf{x}(u) = \mathbf{x}_i (u - i)$ , where  $i = |\lfloor u \rfloor|$  (and  $\mathbf{x}(N) = \mathbf{x}_{N-1}(1)$ )

Alternate solution: u defined from 0 to I

$$\mathbf{x}(u) = \mathbf{x}_i (Nu - i), \text{ where } i = ||Nu||$$

#### Piecewise Bézier curve

- Given 3N + 1 points  $\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_{3N}$
- Define N Bézier segments:

$$\mathbf{x}_{0}(t) = B_{0}(t)\mathbf{p}_{0} + B_{1}(t)\mathbf{p}_{1} + B_{2}(t)\mathbf{p}_{2} + B_{3}(t)\mathbf{p}_{3}$$
  
$$\mathbf{x}_{1}(t) = B_{0}(t)\mathbf{p}_{3} + B_{1}(t)\mathbf{p}_{4} + B_{2}(t)\mathbf{p}_{5} + B_{3}(t)\mathbf{p}_{6}$$
  
$$\vdots$$

$$\mathbf{x}_{N-1}(t) = B_0(t)\mathbf{p}_{3N-3} + B_1(t)\mathbf{p}_{3N-2} + B_2(t)\mathbf{p}_{3N-1} + B_3(t)\mathbf{p}_{3N}$$



### Piecewise Bézier Curve

Parameter in  $0 \le u \le 3N$   $\mathbf{x}(u) = \begin{cases} \mathbf{x}_0(\frac{1}{3}u), & 0 \le u \le 3\\ \mathbf{x}_1(\frac{1}{3}u-1), & 3 \le u \le 6\\ \vdots & \vdots\\ \mathbf{x}_{N-1}(\frac{1}{3}u-(N-1)), & 3N-3 \le u \le 3N \end{cases}$ 



# Parametric Continuity

- C<sup>0</sup> continuity:
  - Curve segments are connected
- C<sup>1</sup> continuity:
  - C<sup>0</sup> & Ist-order derivatives agree
  - Curves have same tangents
  - Relevant for smooth shading
- C<sup>2</sup> continuity:
  - C<sup>1</sup> & 2nd-order derivatives agree
  - Curves have same tangents and curvature
  - Relevant for high quality reflections



# Piecewise Bézier Curve

- 3N+1 points define N Bézier segments
  x(3i)=p<sub>3i</sub>
- $C_0$  continuous by construction
- C<sub>1</sub> continuous at  $\mathbf{p}_{3i}$  when  $\mathbf{p}_{3i}$   $\mathbf{p}_{3i-1}$  =  $\mathbf{p}_{3i+1}$   $\mathbf{p}_{3i}$
- ▶ C<sub>2</sub> is harder to achieve and rarely necessary





## Recommended Structure

- Use your scene graph code from Project 3, and implement some new Geometry subclasses:
- BezierCurve
  - Has a GetPoint(t) method
  - Should draw N sampled points from the curve (project requires N >= 150)
  - Should also draw its own control points
- Track
  - Contains 8 children BezierCurves
  - Supports keyboard controls for editing control points
  - Should draw control handles: lines through related control points, which are not all owned by any single BezierCurve



## More tips

- We can precompute the sampled points inside each BezierCurve, and only update them when that curve is updated.
- Draw lines/points by passing GL\_LINE\_STRIP/GL\_POINTS instead of GL\_TRIANGLES to glDrawElements/glDrawArrays
  - see docs GL\_LINE\_STRIP draws a line for each adjacent pair, GL\_LINES draws a lines for the pairs (0,1), (2,3), ...
- A clean way to enforce CI continuity is to implement more Geometry types
  - Example I: AnchorPoint and TangentPoint subclasses of Geometry
  - Example 2: ControlHandle subclass of Geometry



## Sphere Movement

- We want the sphere to move at a constant velocity *and* stay on the track.
- Pick any point on the track (e.g. a control point) as the initial location. Always keep track of what line segment we're on.
- Calculate the distance to travel in the current frame (frame\_distance = velocity \* delta\_time)
- If traveling this distance keeps the point on the same line segment, we're done.



## Sphere Movement

- Otherwise, travel to the end of the current line segment. Subtract the distance traveled from frame\_distance. Then move on to the next line segment (which we're now on the initial point of).
- Repeat until frame\_distance = 0.
- You also need to handle the case where the sphere moves across different pieces of the track. It's conceptually exactly the same (two adjacent line segments) but requires a bit of extra bookkeeping if you structure your code using BezierCurve objects.