
CSE 190
Discussion 7

Final Project: Dual User VR

Agenda

● Final Project: Dual User VR
● Dual User Application - Networking
● Technical Requirements
● VR Experience
● Extra Credit

Final Project: Dual User VR

● The Final Project is up on the webpage
○ Due Tuesday of Finals week - June 11th at 3:00pm

● You will create a two user VR application for two Oculus Rifts
with controllers running on two separate computers

● Some features you need to implement:
○ Users need to work together on something
○ Need to use collision detection, touch controllers
○ Incorporate audio
○ Create at least one 3D object on your own

http://ivl.calit2.net/wiki/index.php/Project4S19

Final Project: Dual User VR

● In addition to the application also need to create a website/blog
with at least two posts and video

● Report/Blog Posts Due:
○ #1 - Monday of Week 10 (June 3rd at 11:59pm)
○ #2 - Monday of Finals Week (June 10th at 11:59pm)

● Video Due:
○ Tuesday of Finals Week (June 11th at 3:00pm)

Report #1

● The first post needs to contain (at a minimum)
○ The name of your project (You need to come up with one)
○ The names of your team members
○ A short description of the project
○ One or more screenshots of your application in its current

state

Report #2

● The second post needs to contain (at a minimum)
○ Progress you made
○ Updates on any changes made to the team or team name
○ Post another screenshot

● Can use whatever site you wish
○ Just make it the same for both posts

● Feel free to add more entries beyond the required two

Video

● Each team needs to record a video (2-3 min long)
● This will be shown during the first hour grading during the final
● Need to use youtube

○ We will be creating a playlist for you to add your videos to
● Videos are due by June 11th at 3:00pm

Dual User Application
- Networking

Networking

● Recommended networking library: RPC
○ Used to call functions and send information over the

network between your two controllers
○ Documentation here

● You can use other, more extensive libraries for networking
online, but it will be up to you to figure out how they work.

http://rpclib.net/

Sockets Sample

● All the code for the loop above is within the example listed
previously

● How the sample works:
○ Sender:

■ Serialize data into one large array
■ Send it over the network

○ Receiver:
■ Parses the information based off the packet headers

you create

Sockets Sample

● Quick Networking Crash Course:
○ 127.0.0.1 is the localhost, use it to test on the same

computer
○ Make sure each user uses different ports,

■ If you don’t the second person who tries to use it will
get an error

○ Ports numbers <1024 are reserved

Sockets Sample

● To find your local IP:
○ open up command prompt
○ run ipconfig
○ look for the interface that looks correct

■ Looks correct if...
○ Then look for your IPv4 address

Network Architecture

● Important things to keep in mind:
○ The clients should run at 90 fps, but the server can run at 30

ticks per second
■ Keep your camera calculations on the client, only send

over the scene graph
○ Having the server run at a constant rate might make some

calculations easier

Network Architecture

● Important things to keep in mind:
○ Don’t try to do everything at once.
○ First make sure you can get communication over the

network
○ Then integrate it with your code

● Server - Client Architecture:
○ Server = simulation of the virtual world
○ Client = window into the virtual world

Server-Client Architecture

● The server is a simulation of the virtual world
● The client is a window into the virtual world

Server

● Have the server run at a constant rate to simplify things
○ 30 ticks would be a good starting point

● The server will maintain data structures for all the objects in the
simulation
○ A scene graph might be good here

Server

● The server will run a loop consisting of something similar to the
following
○ Receive input from clients
○ Update the state of the simulation (collisions, physics, etc)
○ Send state to clients
○ Wait until next tick

● Having a constant tick rate simplifies how the server works and
limits the work the server puts on the client

Client

● Client maintains local copy of the state

● Client loop runs as fast as possible:
○ Receive messages from server
○ Renders the virtual world
○ Collect input events to send to the server

● The client does not act on input directly
○ The server will do the update, and send the world state back

to the client

● Having an authoritative server helps avoid conflicts

Events

● The server needs to send object data to the clients

● Send events between the Server and Client
○ Sending “fire” events from client to server
○ Sending “hit” events from server to client

● Adds in indirection between button presses and actions

Architecture Adjustments

● Since our case is very simple, with only two users, you can
simplify the architecture a lot.

● You can have one of the computers run a combined server/client,
and
○ Run the server on another thread OR
○ Only do the server update every so often

● If your game is simple enough, you could run the server along
with the client in the same program

● In the end, do whatever makes sense to you and your game

Technical Requirements

3D Model Customization

● You need to create at least one 3D object
● Scan model from pictures:

○ Can use tools like Agisoft Photoscan
○ You can checkout the workflow of Agisoft Photoscan, here

is a tutorial for it
○ There is a 3D scanner in the VR lab that you can try out
○

http://www.agisoft.com/
https://3dscanexpert.com/agisoft-photoscan-photogrammetry-3d-scanning-review/
http://www.agisoft.com/pdf/PS_1.1%20-Tutorial%20(BL)%20-%203D-model.pdf

3D Model Customization

● You can create or pre-process your 3D meshes using tools like
Blender or MeshLab

● Make sure your model is optimized enough
○ Since we are using network communication, models that are

too big will cause your framerate to drop
○ You can use MeshLab to reduce the polygon count of your

model

Model Loading

● Make sure you export your model is exported to Wavefront .obj
file or fbx file or files that you are familiar with

● If you are using Assimp, check out its supported file formats here
○ Assimp supports fbx

and obj file formats
○ Regardless of the file

format, the data
structure of Assimp
stays the same.

https://github.com/assimp/assimp

MTL files

● Creating models sometimes generates additional files to store
color, material, and texture information

● One of these is the Material Library file (.mtl)
○ Contains material definitions

● To access loaded materials with Assimp:
○ aiMaterial* material =

scene->mMaterials[mesh->mMaterialIndex];

MTL files

● To check if your obj file contains a mtl file definition:
○ Open the obj file as text file
○ Check the headers to find the name of the mtl file

■ It often has the same name as the obj file
○ You need to place the .mtl file in the same directory as the

.obj to load it

Texture files

● Some materials might specify
texture files that needs to be used
for the material

● In obj/mtl files, a material can
specify paths to image files

● Again you need to make sure you
place those image files where the
.mtl file needs them

Texture files

● To load these texture images:
○ You can refer to the Model.cpp example in LearnOpenGL

● vector<Texture> loadMaterialTextures()
● unsigned int TextureFromFile()
● These two functions show how to load the texture images.
● To find texture coordinates of the mesh:

○ mesh->mTextureCoords[0]

https://learnopengl.com/code_viewer_gh.php?code=includes/learnopengl/model.h

OpenAL: Open Audio Library

● You need to incorporate audio into your application
○ Can be simply background music or triggered by an event

● We recommend using OpenAL
○ Link to OpenAL slides

https://docs.google.com/presentation/d/1nha9ENV41FhftHJiDlru5kM8vvh3Wr-5MzHVSk6yfu4/edit?usp=sharing

VR Experience

VR Experience - Usability

● Usability determines a big part of the experience

● You shouldn’t need to spend a long time explaining your controls
○ Make controls simple
○ You don’t have to work on UI too much, just don’t make

them overly complicated
○ Anyone with decent amount of VR experience should be

able to easily figure it out

VR Experience - Usability

● Some question to ask to yourself:
○ How intuitive is my application to use?
○ Will my friends or other fellow classmate be able to figure it

out?
○ Does the user have any guide throughout the experience?
○ How do my controls compare to real world actions?
○ Am I showing too much information at same time?

● Demoing the app to the grader in a right way also matters

VR Experience - Creativity, Aesthetics ...

● How original/unique is your application?
○ Try googling your ideas/searching the Oculus Store/Steam
○ See how other people implement ideas, and see if you can

do something different?
○ Take advantages of the techniques used in past assignments

● Some aspects that you can innovate:
○ Topics and application styles
○ Interaction techniques
○ Audio, etc.

VR Experience - Creativity, Aesthetics ...

● Think about:
○ Color schemes
○ Models
○ Textures
○ Materials
○ etc.

● Resources of guidelines toward designing a good VR experience

https://www.uxofvr.com/

Extra Credit

Extra Credit

● We created a list of hackathon-style awards for teams with
outstanding apps

● They also serve as a good guideline for the features we
encourage everyone to take care of in your design

References & Links

● Client-Server network using C++ and Winsock
● MTL file format explained
● Agisoft Photoscan tutorial
● Agisoft Photoscan Review article
● Assimp:

○ Library
○ LearnOpenGL Tutorial and sample codes

https://www.codeproject.com/Articles/412511/Simple-client-server-network-using-Cplusplus-and-W
http://paulbourke.net/dataformats/mtl/
http://www.agisoft.com/pdf/PS_1.1%20-Tutorial%20(BL)%20-%203D-model.pdf
https://3dscanexpert.com/agisoft-photoscan-photogrammetry-3d-scanning-review/
https://github.com/assimp/assimp
https://learnopengl.com/Model-Loading/Assimp

QUESTIONS?

