
CSE 167:

Introduction to Computer Graphics

Lecture #4: Projection

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2015

Announcements

� Project 2 due Friday at 2pm

� Grading window is 2-3:30pm

� Upload source code by 2pm

� Project 3 discussion next Monday at 3pm

2

Objects in Camera Coordinates

� We have things lined up the way we like them on screen

� x to the right

� y up

� -z into the screen

� Objects to look at are in front of us, i.e. have negative z values

� But objects are still in 3D

� Next step: project scene to 2D plane

3

Lecture Overview

� Concatenating Transformations

� Coordinate Transformation

� Typical Coordinate Systems

� Projection

4

Projection

� Goal:
Given 3D points (vertices) in camera coordinates,
determine corresponding image coordinates

� Transforming 3D points into 2D is called Projection

� OpenGL supports two types of projection:

� Orthographic Projection (=Parallel Projection)

� Perspective Projection

5

� Can be done by ignoring z-coordinate

� Use camera space xy coordinates as image coordinates

� Project points to x-y plane along parallel lines

� Often used in graphical illustrations, architecture, 3D modeling

Orthographic Projection

6

Perspective Projection

� Most common for computer graphics

� Simplified model of human eye, or camera lens (pinhole camera)

� Things farther away appear to be smaller

� Discovery attributed to Filippo Brunelleschi (Italian architect) in
the early 1400’s

7

Pinhole Camera

� San Diego, May 20th, 2012

8

Perspective Projection

� Project along rays that converge in center of projection

2D image plane

Center of

projection

3D scene

9

Perspective Projection

Parallel lines are

no longer parallel,

converge in one point

Earliest example:

La Trinitá (1427) by Masaccio10

Perspective Projection

From law of ratios in similar triangles follows:

� We can express this using homogeneous coordinates and
4x4 matrices as follows

Image plane

1

1'

z

y

d

y
=

1

1'
z

dy
y =

dz ='

1

1'
z

dx
x =

11

�

Similarly:

By definition:

Perspective Projection

Homogeneous divisionProjection matrix

1

1'
z

dy
y =

dz ='

1

1'
z

dx
x =

12

Perspective Projection

� Using projection matrix, homogeneous division seems more complicated
than just multiplying all coordinates by d/z, so why do it?

� It will allow us to:

� Handle different types of projections in a unified way

� Define arbitrary view volumes

Projection matrix P

13

Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling

14

View Volumes

� View volume = 3D volume seen by camera

World coordinates

Camera coordinates

Perspective view volume

World coordinates

Camera coordinates

Orthographic view volume

15

Projection

matrix

Projection Matrix

Camera coordinates

Canonical view volume

16

Image space

(pixel coordinates)

Viewport

transformation

Orthographic View Volume

� Specified by 6 parameters:

� Right, left, top, bottom, near, far

� Or, if symmetrical:

� Width, height, near, far

17

Orthographic Projection Matrix

Portho(right,left,top,bottom,near, far) =

2

right − left
0 0 −

right + left

right − left

0
2

top − bottom
0 −

top + bottom

top − bottom

0 0
2

far − near

far + near

far − near

0 0 0 1





























Portho(width,height,near, far) =

2

width
0 0 0

0
2

height
0 0

0 0
2

far − near

far + near

far − near

0 0 0 1



























18

In OpenGL:
glOrtho(left, right, bottom, top, near, far)

No equivalent in OpenGL

Perspective View Volume

General view volume

� Defined by 6 parameters, in camera coordinates
� Left, right, top, bottom boundaries
� Near, far clipping planes

� Clipping planes to avoid numerical problems
� Divide by zero
� Low precision for distant objects

� Usually symmetric, i.e., left=-right, top=-bottom

Camera

coordinates

19

Perspective View Volume

Symmetrical view volume

� Only 4 parameters

� Vertical field of view (FOV)

� Image aspect ratio (width/height)

� Near, far clipping planes

-z

FOV

y

z=-near

z=-far

y=top

aspect ratio=
right − left

top − bottom
=

right

top

tan(FOV / 2) =
top

near

20

Perspective Projection Matrix

� General view frustum with 6 parameters

Camera

coordinates

21

In OpenGL:
glFrustum(left, right, bottom, top, near, far)

Perspective Projection Matrix

� Symmetrical view frustum with field of view, aspect
ratio, near and far clip planes

Ppersp (FOV ,aspect,near, far) =

1

aspect ⋅ tan(FOV / 2)
0 0 0

0
1

tan(FOV / 2)
0 0

0 0
near + far

near − far

2 ⋅ near ⋅ far

near − far

0 0 −1 0





























-z

FOV

y

z=-near

z=-far

y=top

Camera

coordinates

22

In OpenGL:

gluPerspective(fov, aspect, near, far)

Canonical View Volume

� Goal: create projection matrix so that

� User defined view volume is transformed into canonical
view volume: cube [-1,1]x[-1,1]x[-1,1]

� Multiplying corner vertices of view volume by projection
matrix and performing homogeneous divide yields corners
of canonical view volume

� Perspective and orthographic projection are treated
the same way

� Canonical view volume is last stage in which
coordinates are in 3D

� Next step is projection to 2D frame buffer

23

Viewport Transformation

� After applying projection matrix, scene points are in normalized
viewing coordinates

� Per definition within range [-1..1] x [-1..1] x [-1..1]

� Next is projection from 3D to 2D (not reversible)

� Normalized viewing coordinates can be mapped to image
(=pixel=frame buffer) coordinates

� Range depends on window (view port) size:
[x0…x1] x [y0…y1]

� Scale and translation required:

D x0 , x1, y0 , y1()=

x1 − x0() 2 0 0 x0 + x1() 2

0 y1 − y0() 2 0 y0 + y1() 2

0 0 1 2 1 2

0 0 0 1



















24

Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling

25

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

Object space

26

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

27

Object space

World space

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

28

Object space

World space

Camera space

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

29

Object space

World space

Camera space

Canonical view volume

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

30

Object space

World space

Camera space

Image space

Canonical view volume

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

31

Pixel coordinates:

The Complete Vertex Transformation

32

Model
Matrix

Camera
Matrix

Projection
Matrix

Viewport
Matrix

Object
Coordinates

World
Coordinates

Camera
Coordinates

Canonical
View Volume
Coordinates

Window
Coordinates

Complete Vertex Transformation in OpenGL

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

33

OpenGL GL_MODELVIEW matrix

OpenGL GL_PROJECTION matrix

Complete Vertex Transformation in OpenGL

� GL_MODELVIEW, C-1M
� Defined by the programmer.

� Think of the ModelView matrix as where you stand with the
camera and the direction you point it.

� GL_PROJECTION, P
� Utility routines to set it by specifying view volume:

glFrustum(), gluPerspective(), glOrtho()

� Think of the projection matrix as describing the attributes
of your camera, such as field of view, focal length, etc.

� Viewport, D

� Specify implicitly via glViewport()

� No direct access with equivalent to GL_MODELVIEW or
GL_PROJECTION

34

