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Announcements

� Project 2 due Friday at 2pm

� Grading window is 2-3:30pm

� Upload source code by 2pm

� Project 3 discussion next Monday at 3pm
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Objects in Camera Coordinates

� We have things lined up the way we like them on screen

� x to the right

� y up

� -z into the screen

� Objects to look at are in front of us, i.e. have negative z values

� But objects are still in 3D

� Next step: project scene to 2D plane
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Lecture Overview

� Concatenating Transformations

� Coordinate Transformation

� Typical Coordinate Systems

� Projection
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Projection

� Goal:
Given 3D points (vertices) in camera coordinates, 
determine corresponding image coordinates

� Transforming 3D points into 2D is called Projection

� OpenGL supports two types of projection:

� Orthographic Projection (=Parallel Projection)

� Perspective Projection
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� Can be done by ignoring z-coordinate

� Use camera space xy coordinates as image coordinates

� Project points to x-y plane along parallel lines

� Often used in graphical illustrations, architecture, 3D modeling

Orthographic Projection
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Perspective Projection

� Most common for computer graphics

� Simplified model of human eye, or camera lens (pinhole camera)

� Things farther away appear to be smaller

� Discovery attributed to Filippo Brunelleschi (Italian architect) in 
the early 1400’s
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Pinhole Camera

� San Diego, May 20th, 2012
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Perspective Projection

� Project along rays that converge in center of projection

2D image plane

Center of

projection

3D scene
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Perspective Projection

Parallel lines are

no longer parallel,

converge in one point

Earliest example:

La Trinitá (1427) by Masaccio10



Perspective Projection

From law of ratios in similar triangles follows:

� We can express this using homogeneous coordinates and 
4x4 matrices as follows
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�

Similarly:

By definition:



Perspective Projection

Homogeneous divisionProjection matrix
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Perspective Projection

� Using projection matrix, homogeneous division seems more complicated 
than just multiplying all coordinates by d/z, so why do it?

� It will allow us to:

� Handle different types of projections in a unified way

� Define arbitrary view volumes

Projection matrix P
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Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling

14



View Volumes

� View volume = 3D volume seen by camera

World coordinates

Camera coordinates

Perspective view volume

World coordinates

Camera coordinates

Orthographic view volume
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Projection 

matrix

Projection Matrix

Camera coordinates

Canonical view volume
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Image space

(pixel coordinates)

Viewport 

transformation



Orthographic View Volume

� Specified by 6 parameters:

� Right, left, top, bottom, near, far

� Or, if symmetrical:

� Width, height, near, far
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Orthographic Projection Matrix

Portho(right,left,top,bottom,near, far) =
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In OpenGL:
glOrtho(left, right, bottom, top, near, far)

No equivalent in OpenGL



Perspective View Volume

General view volume

� Defined by 6 parameters, in camera coordinates 
� Left, right, top, bottom boundaries
� Near, far clipping planes

� Clipping planes to avoid numerical problems
� Divide by zero
� Low precision for distant objects

� Usually symmetric, i.e., left=-right, top=-bottom

Camera

coordinates
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Perspective View Volume

Symmetrical view volume

� Only 4 parameters

� Vertical field of view (FOV)

� Image aspect ratio (width/height)

� Near, far clipping planes
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Perspective Projection Matrix

� General view frustum with 6 parameters

Camera

coordinates
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In OpenGL:
glFrustum(left, right, bottom, top, near, far)



Perspective Projection Matrix

� Symmetrical view frustum with field of view, aspect 
ratio, near and far clip planes

Ppersp (FOV ,aspect,near, far) =
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In OpenGL:

gluPerspective(fov, aspect, near, far)



Canonical View Volume

� Goal: create projection matrix so that

� User defined view volume is transformed into canonical 
view volume: cube [-1,1]x[-1,1]x[-1,1]

� Multiplying corner vertices of view volume by projection 
matrix and performing homogeneous divide yields corners 
of canonical view volume 

� Perspective and orthographic projection are treated 
the same way

� Canonical view volume is last stage in which 
coordinates are in 3D

� Next step is projection to 2D frame buffer
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Viewport Transformation

� After applying projection matrix, scene points are in normalized 
viewing coordinates

� Per definition within range [-1..1] x [-1..1] x [-1..1] 

� Next is projection from 3D to 2D (not reversible)

� Normalized viewing coordinates can be mapped to image 
(=pixel=frame buffer) coordinates

� Range depends on window (view port) size:
[x0…x1] x [y0…y1]

� Scale and translation required:
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Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling
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Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

Object space
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Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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Object space

World space



Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

28

Object space

World space

Camera space



Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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Object space

World space

Camera space

Canonical view volume



Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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Object space

World space

Camera space

Image space

Canonical view volume



Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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Pixel coordinates:



The Complete Vertex Transformation
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Complete Vertex Transformation in OpenGL

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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OpenGL GL_MODELVIEW matrix

OpenGL GL_PROJECTION matrix



Complete Vertex Transformation in OpenGL

� GL_MODELVIEW, C-1M
� Defined by the programmer.

� Think of the ModelView matrix as where you stand with the 
camera and the direction you point it.

� GL_PROJECTION, P
� Utility routines to set it by specifying view volume: 

glFrustum(), gluPerspective(), glOrtho()

� Think of the projection matrix as describing the attributes 
of your camera, such as field of view, focal length, etc.

� Viewport, D

� Specify implicitly via glViewport() 

� No direct access with equivalent to GL_MODELVIEW or 
GL_PROJECTION
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