CSE 167: Introduction to Computer Graphics Lecture #4: Projection

Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

Announcements

- Project 2 due Friday at 2pm
 - Grading window is 2-3:30pm
 - Upload source code by 2pm
- Project 3 discussion next Monday at 3pm

Objects in Camera Coordinates

• We have things lined up the way we like them on screen

- **x** to the right
- **y** up
- -z into the screen
- Objects to look at are in front of us, i.e. have negative z values
- But objects are still in 3D
- Next step: project scene to 2D plane

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Projection

Goal:

Given 3D points (vertices) in camera coordinates, determine corresponding image coordinates

- Transforming 3D points into 2D is called Projection
- OpenGL supports two types of projection:
 - Orthographic Projection (=Parallel Projection)
 - Perspective Projection

Orthographic Projection

Can be done by ignoring z-coordinate

- Use camera space xy coordinates as image coordinates
- Project points to x-y plane along parallel lines

Often used in graphical illustrations, architecture, 3D modeling

6

- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)

- Things farther away appear to be smaller
- Discovery attributed to Filippo Brunelleschi (Italian architect) in the early 1400's

Pinhole Camera

San Diego, May 20th, 2012

Project along rays that converge in center of projection

Parallel lines are no longer parallel, converge in one point

Earliest example: La Trinitá (1427) by Masaccio

From law of ratios in similar triangles follows:

 We can express this using homogeneous coordinates and 4x4 matrices as follows

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} xd/z \\ yd/z \\ d \\ 1 \end{bmatrix}$$

Projection matrix P

- Using projection matrix, homogeneous division seems more complicated than just multiplying all coordinates by d/z, so why do it?
- It will allow us to:
 - Handle different types of projections in a unified way
 - Define arbitrary view volumes

Lecture Overview

View Volumes

- Vertex Transformation
- Rendering Pipeline
- Culling

View Volumes

View volume = 3D volume seen by camera

World coordinates

Perspective view volume

Camera coordinates

World coordinates

Orthographic View Volume

- Specified by 6 parameters:
 - Right, left, top, bottom, near, far
- Or, if symmetrical:
 - Width, height, near, far

₹UCSD

18

Perspective View Volume

General view volume

- Defined by 6 parameters, in camera coordinates
 - Left, right, top, bottom boundaries
 - Near, far clipping planes
- Clipping planes to avoid numerical problems
 - Divide by zero
 - Low precision for distant objects
- Usually symmetric, i.e., left=-right, top=-bottom

Perspective View Volume

Symmetrical view volume

z=-far

Only 4 parameters

- Vertical field of view (FOV)
- Image aspect ratio (width/height)
- Near, far clipping planes

aspect ratio=
$$\frac{right - left}{top - bottom} = \frac{right}{top}$$

tan(FOV / 2) = $\frac{top}{near}$

Perspective Projection Matrix

General view frustum with 6 parameters

 $\mathbf{P}_{persp}(left, right, top, bottom, near, far) =$

$$\begin{bmatrix} \frac{2near}{right-left} & 0 & \frac{right+left}{right-left} & 0\\ 0 & \frac{2near}{top-bottom} & \frac{top+bottom}{top-bottom} & 0\\ 0 & 0 & \frac{-(far+near)}{far-near} & \frac{-2far\cdot near}{far-near}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

In OpenGL: glFrustum(left, right, bottom, top, near, far)

Perspective Projection Matrix

Symmetrical view frustum with field of view, aspect ratio, near and far clip planes

₹UCSE

Canonical View Volume

Goal: create projection matrix so that

- User defined view volume is transformed into canonical view volume: cube [-1,1]x[-1,1]x[-1,1]
- Multiplying corner vertices of view volume by projection matrix and performing homogeneous divide yields corners of canonical view volume
- Perspective and orthographic projection are treated the same way
- Canonical view volume is last stage in which coordinates are in 3D
 - Next step is projection to 2D frame buffer

Viewport Transformation

- After applying projection matrix, scene points are in normalized viewing coordinates
 - Per definition within range [-1..1] x [-1..1] x [-1..1]
- Next is projection from 3D to 2D (not reversible)
- Normalized viewing coordinates can be mapped to image (=pixel=frame buffer) coordinates
 - Range depends on window (view port) size: [x0...x1] x [y0...y1]
- Scale and translation required:

$$\mathbf{D}(x_0, x_1, y_0, y_1) = \begin{bmatrix} (x_1 - x_0)/2 & 0 & 0 & (x_0 + x_1)/2 \\ 0 & (y_1 - y_0)/2 & 0 & (y_0 + y_1)/2 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling

Mapping a 3D point in object coordinates to pixel coordinates:

$$\mathbf{p}' = \mathbf{DPC}^{-1}\mathbf{M}\mathbf{p}$$

Object space

- M: Object-to-world matrix
- **C**: camera matrix
- P: projection matrix
- **D**: viewport matrix

Mapping a 3D point in object coordinates to pixel coordinates:

$$\mathbf{p}' = \mathbf{DPC}^{-1} \mathbf{M} \mathbf{p}$$

Object space
World space

- M: Object-to-world matrix
- **C**: camera matrix
- P: projection matrix
- **D**: viewport matrix

Mapping a 3D point in object coordinates to pixel coordinates:

$$\mathbf{p}' = \mathbf{DP} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$$

Object space
World space
Camera space

- M: Object-to-world matrix
- **C**: camera matrix
- P: projection matrix
- **D**: viewport matrix

Mapping a 3D point in object coordinates to pixel coordinates:

 $\mathbf{p}' = \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$ Object space World space Camera space Canonical view volume

- M: Object-to-world matrix
- C: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

- Mapping a 3D point in object coordinates to pixel coordinates: $\mathbf{p}' = \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$ Object space World space Camera space Image space
 - M: Object-to-world matrix
 - C: camera matrix
 - **P**: projection matrix
 - **D**: viewport matrix

Mapping a 3D point in object coordinates to pixel coordinates: $\mathbf{DPC}^{-1}\mathbf{Mp}$

$$\mathbf{p}' = \begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix}$$

Pixel coordinates: $\frac{x'/w'}{y'/w'}$

- M: Object-to-world matrix
- **C**: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

Complete Vertex Transformation in OpenGL

Mapping a 3D point in object coordinates to pixel coordinates:

OpenGL GL_MODELVIEW matrix

 $\mathbf{p}' = \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$

- OpenGL GL_PROJECTION matrix
- M: Object-to-world matrix
- **C**: camera matrix
- P: projection matrix
- **D**: viewport matrix

Complete Vertex Transformation in OpenGL

► GL_MODELVIEW, C^{-I}M

- Defined by the programmer.
- Think of the ModelView matrix as where you stand with the camera and the direction you point it.

► GL_PROJECTION, **P**

- Utility routines to set it by specifying view volume: glFrustum(), gluPerspective(), glOrtho()
- Think of the projection matrix as describing the attributes of your camera, such as field of view, focal length, etc.

Viewport, D

- Specify implicitly via glViewport()
- No direct access with equivalent to GL_MODELVIEW or GL_PROJECTION

