## CSE 167: <br> Introduction to Computer Graphics Lecture \#4: Projection

Jürgen P. Schulze, Ph.D.<br>University of California, San Diego<br>Fall Quarter 2015

## Announcements

- Project 2 due Friday at 2pm
- Grading window is $2-3: 30$ pm
, Upload source code by 2pm
- Project 3 discussion next Monday at 3pm


## Objects in Camera Coordinates

- We have things lined up the way we like them on screen
- $\mathbf{x}$ to the right
- y up
- -z into the screen
- Objects to look at are in front of us, i.e. have negative $z$ values
- But objects are still in 3D
- Next step: project scene to 2D plane


## Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection


## Projection

- Goal:

Given 3D points (vertices) in camera coordinates, determine corresponding image coordinates

- Transforming 3D points into 2D is called Projection
- OpenGL supports two types of projection:
- Orthographic Projection (=Parallel Projection)
- Perspective Projection


## Orthographic Projection

- Can be done by ignoring z-coordinate
- Use camera space xy coordinates as image coordinates
- Project points to $\mathbf{x}-\mathbf{y}$ plane along parallel lines

- Often used in graphical illustrations, architecture, 3D modeling



## Perspective Projection

- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)

- Things farther away appear to be smaller
- Discovery attributed to Filippo Brunelleschi (Italian architect) in the early 1400's


## Pinhole Camera

- San Diego, May 20th 2012



## Perspective Projection

- Project along rays that converge in center of projection



## Perspective Projection



Earliest example:

## Perspective Projection

From law of ratios in similar triangles follows:
$\frac{y^{\prime}}{d}=\frac{y_{1}}{z_{1}} \rightarrow y^{\prime}=\frac{y_{1} d}{z_{1}}$
Similarly: $\quad x^{\prime}=\frac{x_{1} d}{z_{1}}$
By definition: $\quad z^{\prime}=d$


- We can express this using homogeneous coordinates and $4 \times 4$ matrices as follows


## Perspective Projection

$x^{\prime}=\frac{x_{1} d}{z_{1}}$

$$
y^{\prime}=\frac{y_{1} d}{z_{1}}
$$

$$
z^{\prime}=d
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right] \longrightarrow\left[\begin{array}{c}
x d / z \\
y d / z \\
d \\
1
\end{array}\right]
$$

Projection matrix

Homogeneous division

## Perspective Projection

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right]=\left[\begin{array}{c}
x d / z \\
y d / z \\
d \\
1
\end{array}\right]
$$

## Projection matrix $\mathbf{P}$

- Using projection matrix, homogeneous division seems more complicated than just multiplying all coordinates by $d / z$, so why do it?
- It will allow us to:
- Handle different types of projections in a unified way
- Define arbitrary view volumes


## Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling


## View Volumes

- View volume $=$ 3D volume seen by camera

Orthographic view volume


World coordinates

Perspective view volume
Camera coordinates


World coordinates

## Projection Matrix



## Orthographic View Volume



- Specified by 6 parameters:
- Right, left, top, bottom, near, far
- Or, if symmetrical:
- Width, height, near, far


## Orthographic Projection Matrix

In OpenGL:
glOrtho(left, right, bottom, top, near, far)
No equivalent in OpenGL $\mathbf{P}_{\text {ortho }}$ (width, height, near, far) $=\left[\begin{array}{cccc}\frac{2}{\text { width }} & 0 & 0 & 0 \\ 0 & \frac{2}{\text { height }} & 0 & 0 \\ 0 & 0 & \frac{2}{\text { far }- \text { near }} & \frac{\text { far }+ \text { near }}{\text { far }- \text { near }} \\ 0 & 0 & 0 & 1\end{array}\right]$

## Perspective View Volume

## General view volume



- Defined by 6 parameters, in camera coordinates - Left, right, top, bottom boundaries
, Near, far clipping planes
- Clipping planes to avoid numerical problems
- Divide by zero
, Low precision for distant objects
, Usually symmetric, i.e., left=-right, top=-bottom



## Perspective View Volume

## Symmetrical view volume



- Only 4 parameters
- Vertical field of view (FOV)
- Image aspect ratio (width/height)
- Near, far clipping planes
aspect ratio $=\frac{\text { right }- \text { left }}{\text { top }- \text { bottom }}=\frac{\text { right }}{\text { top }}$
$\tan (F O V / 2)=\frac{\text { top }}{\text { near }}$


## Perspective Projection Matrix

- General view frustum with 6 parameters


In OpenGL:
gIFrustum(left, right, bottom, top, near, far)

## Perspective Projection Matrix

- Symmetrical view frustum with field of view, aspect ratio, near and far clip planes



## Canonical View Volume

- Goal: create projection matrix so that
- User defined view volume is transformed into canonical view volume: cube $[-1,1] \mathrm{x}[-1,1] \times[-1,1]$
- Multiplying corner vertices of view volume by projection matrix and performing homogeneous divide yields corners of canonical view volume
- Perspective and orthographic projection are treated the same way
- Canonical view volume is last stage in which coordinates are in 3D
- Next step is projection to 2D frame buffer


## Viewport Transformation

- After applying projection matrix, scene points are in normalized viewing coordinates
- Per definition within range [-1..1] x [-1..1] x [-1..1]
- Next is projection from 3D to 2D (not reversible)
- Normalized viewing coordinates can be mapped to image (=pixel=frame buffer) coordinates
- Range depends on window (view port) size: [x0...x1] x [y0...yl]
- Scale and translation required:

$$
\mathbf{D}\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=\left[\begin{array}{cccc}
\left(x_{1}-x_{0}\right) / 2 & 0 & 0 & \left(x_{0}+x_{1}\right) / 2 \\
0 & \left(y_{1}-y_{0}\right) / 2 & 0 & \left(y_{0}+y_{1}\right) / 2 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling


## Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\left.\mathbf{D P C} \mathbf{C}^{-1} \mathbf{M}\right|_{\text {Object space }} ^{\mathbf{p}}
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix


## Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\mathbf{D P C} \mathbf{C}^{-1} \left\lvert\, \begin{array}{|l}
\mathbf{M} \\
\text { Object spa } \\
\text { World space }
\end{array}\right.
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix


## Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\mathbf{D P} \left\lvert\, \begin{aligned}
& \mathbf{C}^{-1} \left\lvert\, \begin{array}{l}
\mathbf{M} \mathbf{p} \\
\text { Object space } \\
\text { World space }
\end{array}\right. \\
& \text { Camera space }
\end{aligned}\right.
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix


## Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\mathrm{DP} \mathbf{C}^{-1} \left\lvert\, \begin{aligned}
& \mathbf{M} \mathbf{p} \\
& \begin{array}{c}
\text { Object space } \\
\text { World space }
\end{array} \\
& \text { Camera space } \\
& \text { Canonical view volume }
\end{aligned}\right.
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix


## Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M}_{\text {Object space }}
$$

World space
Camera space
Canonical view volume Image space
, M: Object-to-world matrix

- C: camera matrix
- P: projection matrix
- D: viewport matrix


## Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{D P C}^{-1} \mathbf{M} \mathbf{p} \\
\mathbf{p}^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right] \quad \text { Pixel coordinates: }
\end{gathered} \begin{aligned}
& x^{\prime} / w^{\prime} \\
& y^{\prime} / w^{\prime}
\end{aligned}
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix


## The Complete Vertex Transformation



## Complete Vertex Transformation in OpenGL

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\begin{aligned}
& \text { OpenGL GL_MODELVIEW matrix } \\
& \mathbf{p}^{\prime}=\mathbf{D P C}{ }^{-1} \mathbf{M} \mathbf{p} \\
& \text { OpenGL GL_PROJECTION matrix }
\end{aligned}
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix


## Complete Vertex Transformation in OpenGL

- GL_MODELVIEW, C-1M
- Defined by the programmer.
- Think of the ModelView matrix as where you stand with the camera and the direction you point it.
- GL_PROJECTION, P
- Utility routines to set it by specifying view volume: glFrustum(), gluPerspective(), glOrtho()
- Think of the projection matrix as describing the attributes of your camera, such as field of view, focal length, etc.
- Viewport, D
- Specify implicitly via glViewport()
- No direct access with equivalent to GL_MODELVIEW or GL_PROJECTION

