CSE 167
Discussion #7

Control, control, you must lerp control



Bezier Curves

e The general form of a Bezier Curve can have any
number of control points
e |In general, the more control points used to generate a

curve, the more accurately it can represent various non-
polynomial curves

§ = ZO (C’) ()" (1 =)™ p)



Bezier Curves

e There is a fairly massive diminishing return in the
computing world: the amount of accuracy gained from
each additional control point is terribly small in

comparison to the increase in compute time needed to
evaluate the curve

§ = ZO (C’) ()" (1 =)™ p)



Bezier Curves

e So we make a compromise: use 4 control points and
hope for the best!



Bezier Curves

e Starting with 4 control points { Po, P1, P2, P3|, and a
time t, we can interpolate all of the control points at time
t using this quite large, and potentially scary equation:

q= i ((i’) ()1 =) p)

1=0



Bezier Curves

e Note that what was n in the general equation has now
been replaced with 3. This is due to us using 4 control
points. n is always the number of control points - 1.

q= i ((i’) ()1 =) p)

1=0



Bezier Curves

e Remembering that combinations expand to:




Feel the Bernstein

e At this point we notice that given some time t that the
leading coefficient evaluates to a constant scalar, so we

can replace it with a convenient function C(f), the
Bernstein Polynomial

3! ? 3—1
Cult) = = (=1




Bezier Curves

e Substituting back into our equation:




Bezier Curves

e This is nothing more than adding together 4 vectors that
have each been multiplied by a scalar weight!

(j'a: Poz -]51:1:- p2x pr
Gy | = Co(t) |Poy | + C1(t) | Pry | + Ca(t) | P2y | + C3(t) | P3y
_q,z_ pOZ plz pQZ p&z




Bezier Curves

e \Which is a matrix-vector product in disguise!:

N Yo N ()}
qx Pox Piz P2z P3x Ol (t)
iy | = [Boy B P B | oy
_QZ_ _pOZ P1z P2z p32_ 03 (t)







Selection Buffers

e Each selectable object in your scene will have an id

ID: O

J3




Selection Buffers

e On mouse click, re-render the scene with a selection
shader, colored by the ID
e How? Use uniforms!
uniform uint id;

g




Selection Buffers

e Read the pixel color at that point
— Retrieve the ID

g

You clicked 3!




A Selection Shader

Control.cpp selection.frag

selectionDraw(GLuint shaderProgram) #version 330 core

{ uniform uin
véc4 color;

glPointSize(10.0f); // Make points larger for easier

selection . .
void main()

{

GLuint idLocation = glGetUniformLocation
"id"y;

haderProgranm,

glUniformlui(idLocation color = vec4(id/255.0f, 0.0f, 0.0f, 0.0f);

Window.cpp (pseudocode)

1. When mouse is clicked, draw all selectables with
selection shader.
2. Read the pixel colored in by the shader

3. Recover ID from that pixel



A Selec Shader

selection.frag Window.cpp

#version 330 core void Window: :mouse_button_callback(GLFWwindow* window, int

button, int action, int mods
uniform uint id; ? ? )

out vec4 color; {

if (button == GLFW_MOUSE_BUTTON_LEFT && action ==
GLFW_PRESS)
void main()

{
{ for(auto & selectable : selectables)
color ec4(id/255.0f, 0.0f, 0.0f, 0.0f); {
¥ selectable->selectionDraw(selectionShader);
}

unsigned char pix[4];

eadPixeIs(xpps, height - ypos, 1, 1, GL_RGBA,
GL_UNSIGNED_BYTE®%| &pix)

selected = selectables[(unsigned int) pix[@]];



Raycasting

e Shoot a ray from the camera towards the mouse

e Find the first object that intersects with the ray
That object is now selected!

e A bit more math heavy way of selecting than selection
buffer

e If you want to learn more, take CSE 168 or read this

tutorial:
http://antongerdelan.net/opengl/raycasting.html



http://antongerdelan.net/opengl/raycasting.html
http://antongerdelan.net/opengl/raycasting.html

