CSE 167:
 Introduction to Computer Graphics Lecture \#9: Culling

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2015

Midterm Results

Category	
Exams Submitted	98
Average Score	52.7
Median Score	54
Highest Score	80
Lowest Score	27.5
$70-80$ Points	7
$60-70$ Points	26
$50-60$ Points	29
$40-50$ Points	18
$30-40$ Points	16
$20-30$ Points	2

Announcements

- Project 4 due Friday
- This Friday no late grading

Lecture Overview

- Culling

Culling

- Goal:

Discard geometry that does not need to be drawn to speed up rendering

- Types of culling:
- View frustum culling
- Occlusion culling
- Small object culling
- Backface culling
- Degenerate culling

View Frustum Culling

- Triangles outside of view frustum are off-screen
- Done on canonical view volume

Images: SGI OpenGL Optimizer Programmer's Guide

Videos

- Rendering Optimizations - Frustum Culling
- http://www.youtube.com/watch?v=kvVHp9wMAO8
- View Frustum Culling Demo
- http://www.youtube.com/watch?v=bJrYTBGpwic

Bounding Volumes

- Simple shape that completely encloses an object
- Generally a box or sphere
- We use spheres
- Easiest to work with

- But hard to calculate tight fits
- Intersect bounding volume with view frustum instead of each primitive

