CSE 167: Introduction to Computer Graphics Lecture #9: Culling

Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

Midterm Results

Category	
Exams Submitted	98
Average Score	52.7
Median Score	54
Highest Score	80
Lowest Score	27.5
70-80 Points	7
60-70 Points	26
50-60 Points	29
40-50 Points	18
30-40 Points	16
20-30 Points	2

Announcements

- Project 4 due Friday
- This Friday no late grading

Lecture Overview

Culling

Culling

Goal:

Discard geometry that does not need to be drawn to speed up rendering

- Types of culling:
 - View frustum culling
 - Occlusion culling
 - Small object culling
 - Backface culling
 - Degenerate culling

View Frustum Culling

Triangles outside of view frustum are off-screen

Done on canonical view volume

Images: SGI OpenGL Optimizer Programmer's Guide

Videos

Rendering Optimizations - Frustum Culling

- http://www.youtube.com/watch?v=kvVHp9wMAO8
- View Frustum Culling Demo
 - http://www.youtube.com/watch?v=bJrYTBGpwic

Bounding Volumes

- Simple shape that completely encloses an object
- Generally a box or sphere
- We use spheres
 - Easiest to work with
 - But hard to calculate tight fits
- Intersect bounding volume with view frustum instead of each primitive

