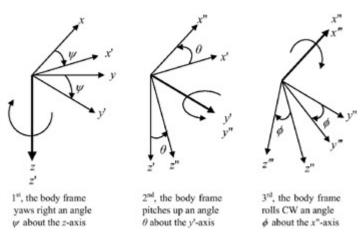
CSE 165: 3D User Interaction

Lecture #7: Input Devices


Announcements

- Homework project 2 is on line
 - Due Friday Feb 10th

Quaternions

Rotation Calculations

- Intuitive approach: Euler Angles:
 - Simplest way to calculate rotations
 - Defines rotation by 3 sequential rotations about coordinate axes
 - Example Z-Y-X:

Problems With Euler Angles

- Problems with Euler angles:
 - No standard for order of rotations
 - Gimbal Lock, occurs in certain object orientations
 - Video
 - https://www.youtube.com/watch?v=rrUCBOIJdt4
- Better: rotation about arbitrary axis (no Gimbal lock)
 - Can be done with 4x4 matrix
 - But: smoothly interpolating between two orientations is difficult
- → Quaternions

Quaternion Definition

- Given angle and axis of rotation:
 - o a: rotation angle
 - {nx,ny,nz}: normalized rotation axis
- Calculation of quaternion coefficients W, X, y, Z:
 - \circ w = cos(a/2)
 - $x = \sin(a/2) * nx$
 - $y = \sin(a/2) * ny$
 - $z = \sin(a/2) * nz$

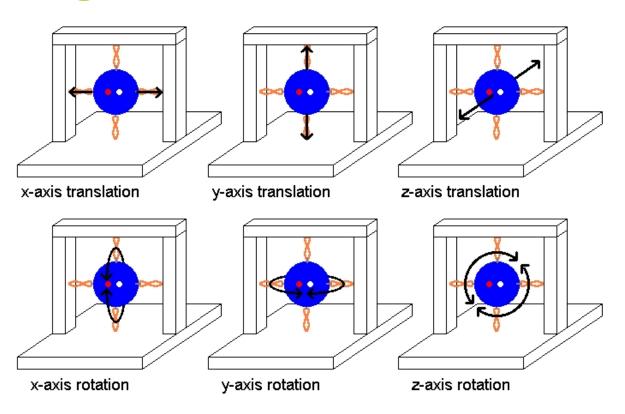
Useful Quaternions

w	х	у	z	Description
1	0	0	0	Identity quaternion, no rotation
0	1	0	0	180° turn around X axis
0	0	1	0	180° turn around Y axis
0	0	0	1	180° turn around Z axis
sqrt(0.5)	sqrt(0.5)	0	0	90° rotation around X axis
sqrt(0.5)	0	sqrt(0.5)	0	90° rotation around Y axis
sqrt(0.5)	0	0	sqrt(0.5)	90° rotation around Z axis
sqrt(0.5)	-sqrt(0.5)	0	0	-90° rotation around X axis
sqrt(0.5)	0	-sqrt(0.5)	0	-90° rotation around Y axis
sqrt(0.5)	0	0	-sqrt(0.5)	-90° rotation around Z axis

Quaternions: Further Reading

- Rotating Objects Using Quaternions
 - http://www.gamasutra.com/view/feature/1316
 86/rotating_objects_using_quaternions.php
- Quaternions in Unity 3D:
 - https://docs.unity3d.com/ScriptReference/Quaternion.html
- Quaternions in OpenSceneGraph:
 - http://www.openscenegraph.org/projects/osg/ wiki/Support/Maths/QuaternionMaths

Input Devices


Overview

- Degrees of freedom
- 2-DOF devices
- Relative 6-DOF devices
- Absolute 6-DOF devices
 - mechanical
 - electromagnetic
 - inertial
 - optical
 - ultrasound
 - hybrid
 - special purpose

Degrees of Freedom (DOF)

- DOF: Set of independent displacements that specify completely the displaced or deformed position of a body or system.
- 3 DOF for position:
 - Moving up and down (heaving)
 - Moving left and right (swaying)
 - Moving forward and backward (surging)
- Output
 3 DOF for orientation:
 - Tilting up and down (pitching)
 - Turning left and right (yawing)
 - Tilting side to side (rolling)
 - See also: Euler angles

6 Degrees of Freedom

Keyboard (binary n-DOF) and Mouse (2-DOF)

- Some VR applications are designed for keyboard, mouse or game pads
- Can work well for walk/flythrough applications
- Doesn't work well for 3D selection and manipulation

3 DOF: GPS

- GPS = Global Positioning Satellite system
- GPS receivers determine exactly how long it takes for the signals to travel from each satellite
- Result:
 - Latitude
 - Longitude
 - Altitude

Touch or Pen-based Tablets

- Absolute 2D position
 - o 2 DOF
- Microsoft Surface Dial
 - Adds 1 DOF

6-DOF Relative Devices

- Relative position and orientation
- 3dconnexion/Logitech

Space Navigator

Mechanical 6-DOF Tracking

- Fakespace Boom: doubles as a stereo display
- Geomagic Touch: doubles as a haptic feedback device

Fakespace Boom

Geomagic Touch

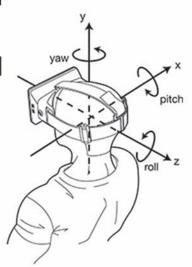
Electromagnetic Tracking

- Fixed transmitter generates lowlevel magnetic field from 3 orthogonal coils
- Fields generate current in smaller receiver unit(s) worn by user
- 6-DOF tracking achieved by analyzing signal strength in receiving coils
- Advantage: no line of sight restrictions
- Disadvantage: metal in environment can cause interference

Razer Hydra

Sixense STEM

Inertial Tracking


 Trackers use miniature gyroscopes to measure orientation changes: 3-DOF

 Accelerometers can help calibrate, add position tracking

 Disadvantage: drift between actual and reported values, accumulates over time

Gyro in Oculus Rift DK1

3 Rotational DOF

Optical Tracking: Mocap Devices

- Infrared (IR) cameras illuminate scene for easier detection of markers
- Multiple markers (highly reflective spheres) arranged in fixed, known configurations allow for 6 DOF tracking

ART Tracking System

Vicon Tracking System