Discussion 8
CSE167

Final Project - High-level Description

e Projectinclude:

Blog (4 + 3 + 3 = 10 points)

o Video (5 points)

o Graphics Applications (85 points)
o Extra Credit (10 points)

O

Final Project - Logistics

e Teamsof2or3.
e Grading:
o Technical and creative merits.
o Time:from 3to 5:59 pm on December 12,2019
o Location:
m Project grading: basement labs
m Video Presentation: CSE 1242
Keep in mind:
m 3skill points per person: any combination of easy (1 pts), medium(2 pts) and hard (3 pts).
m Maximum of 1 easy point will be counted for each person.
m First blog should be up by on Wednesday Nov 27th at 11:59 pm. (4 points)

o

Blog Example

e First blog entry should include:
o Name of your project
Names of your team members
1 paragraph of the content of your project
Technical features that you are aiming for
Creative efforts
o Picture (screenshot or sketch, DO NOT copy it from other people’s work!)

° Quite Town

O O O O

https://chh145.wordpress.com/

Demo 1 Pong In 3D

Effects:
1. Easy:
a. Sound effects
b. Collision Detection
c. First person camera
control with player
movements
2. ExtraCredit:
a. Motion blur
b. Depth of Field
3. Creative Efforts:
a. Arenaselection
b. Opponent selection

* The levels of difficulty varies from last time the course is offered, the description here matches current requirements.

https://www.youtube.com/watch?v=5pb64o9Ni4M&list=PLgrNWQ9zqY8Zn9lsHzvQWikCJrX5VUoYg&index=3&t=0s
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch27.html
http://www.youtube.com/watch?v=5pb64o9Ni4M

Demo 2 Reflections to Projections: Lief In a
2D World

Effects:

1. Easy:

a. Collision detection

b. Sound effects
2. Medium:

a. Procedurally generated terrain

b. Shadow mapping

c. Water effect with reflection and refraction
3. Extracredit:

a. Water effect with reflection of 3D models
4. Creative effort:

a. Creative content and game design

b. Player options

https://www.youtube.com/watch?v=mOlHwiSQaqU&list=PLgrNWQ9zqY8Zn9lsHzvQWikCJrX5VUoYg&index=15&t=0s
https://www.youtube.com/watch?v=mOlHwiSQaqU&list=PLgrNWQ9zqY8Zn9lsHzvQWikCJrX5VUoYg&index=15&t=0s
http://www.youtube.com/watch?v=mOlHwiSQaqU

Demo 3 Quiet Town

1. Easy:
a. Toonshading
b. Sound effects
c. First person camera control with player
movements
2. Medium:
a. Shadow mapping
b. Procedural cloud
c. Procedural Ocean with fractal brownian
motion based height field
3. Hard:

a. Fully dynamic god ray with rasterized
fragments as occluders
4. Extracredit:
a. Skylight ambient occlusion

https://www.youtube.com/watch?v=v_ZQwNfg3y4&list=PLgrNWQ9zqY8Zn9lsHzvQWikCJrX5VUoYg&index=43&t=0s
http://www.youtube.com/watch?v=v_ZQwNfg3y4

Recommendations on technical difficulties

e Easy: (1 skill point)
o Toon shading
Glow, bloom or halo effect
Particle effect
Procedurally modeled buildings (no shape grammar)
Sound effects
Collision detection with bounding spheres or boxes
Selection buffer for selection with the mouse
First person camera control with player movements

o O O O O O O

https://www.opengl.org/archives/resources/faq/technical/selection.htm

Recommendations on technical difficulties

e Medium: (2 skill points)
o Bump mapping
Surface made with at least two C1 continuous Bezier patches (e.g., flag, water surface, etc.)
Procedurally modeled city (no shape grammar)
Procedurally generated terrain
Procedurally generated plants with L-systems
Procedurally modeled buildings with shape grammar
Water effect with reflection and refraction
Shadow mapping
Procedurally generated and animated clouds

O O O 0O O 0O O O

Recommendations on technical difficulties

e Hard: (3 skill points)
o Displacement mapping
o Screen space post-processed lights
o Collision detection with arbitrary geometry
o Shadow Volumes

Recommendations on technical difficulties

e Extra Credit: (maximum 10 points)
o Advanced Effects (3 pts each)
m Water effect with reflection of 3D models (doesn't stack with regular water effect)
m Screen space ambient occlusion (SSAQO) or Screen space directional occlusion (SSDO)
m Motion blur (tutorial link)
m Depth of Field
o Virtual Reality (10 pts)

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch27.html

Particle effect

e Large amount of particles (sprites, points, or anything) follow some combinations of
physical and non-physical rules
At least 200 particles are needed for the final project

e Including two separate stages:

o Simulation stage:
m Control spawning and lifetime of particles
m Apply transformation updates

o Rendering stage:
m Update positions of all particles to VBO
m Use GL_POINT to render or utilize Instanced Rendering if you want to render each particle

with geometry other than point

http://ogldev.atspace.co.uk/www/tutorial33/tutorial33.html

Particle effect

Simulation stage , -
f . _duration; //
e (Youdon't have to follow ::vec3 position;

. . . loeityy
this implementation) 3 i

Particle(float mass, float duration);
b« IsAlive() {return time < duration};
void Update(float deltaTime) {

// keep track the lifetime

time += deltaTime;

// Compute acceleration (Newton’s
vec3 accel =

// Compute new p 2ion & velocity b:s d on acceleration
_velocity +=
_position +=
// reset the
_forece = glm::

}

void Draw() ;

void ApplyForce (glm::vec3 &f) { force += f;}

};

\ Particle effect

e Check more

http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/

Sound effect

OpenAL is a pre-approved library for sound effect in the final project

Requirements:
o Background music
o Sounds triggered by events
o Sounds should be able to play at the same time

As you might guess, OpenALs APl naming convention follows the OpenGL one

Create current context and use it during the application lifetime

“Render” audio using audio context in the “audio scene” (similar to render using opengl
context in graphics scene)

Note: this APl deals with audio streams (raw PCM format) instead of with audio codecs.

Sound effect (OpenAl)

Context: where to play the sound, you can think Window inside of OpenGL
Listener: OpenAL supports 3D audio, so listener information is very important
Sources: Information for sound sources

Buffer: Content responsible for the sound source

Simple example

http://www.david-amador.com/2011/06/playing-sound-using-openal/

Sound effect (OpenAl)

Code samples to modify
listener and audio source
properties

ALfloat
ALfloat

ALfloat

// Set Listener attributes
alListenerfv (AL POSITION,listenerPos);
allListenerfv (AL VELOCITY,listenervVel);
alListenerfv (AL ORIENTATION,listenerOri);

ALuint source;
alGenSources (., &source) ;

ALfloat sourcePos[]=({ 2
ALfloat sourceVel[]l={ y %4

alsourcef (source,AL PITCH,)iz
alSourcef (source ,AL GAIN,) B
alsourcefv(source,AL POSITION,sourcePos);
alsourcefv(source,AL VELOCITY,sourceVel) ;
alsourcei (source,AL BUFFER, buffer);

aud 1

alSourcei (source,AL LOOPING,AL TRUE);

Bump Mapping

TBN matrix: A rotation matrix that can transform a vector in tangent space to world space
Normal map data are in tangent space

e Inorder to utilize normal map data, you can:

o Either transform normal map data to world space by multiplying with TBN matrix

Or transform light direction, eye position, etc to tangent space by multiplying with transpose(TBN)
e Algorithm to calculate TBN matrix and its derivation: Tutorial

o

https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Bump Mapping

- Flatness

- Quick ond Easy apply

- Good for bockground
thot will be alwoys
perpendicutar to the
viewers

- Flotness but
light in differer

Con sove a lot of memaory
showing the best result for

detall

Causing o lot of loading
time ond rendering time

http://www.youtube.com/watch?v=Xark6k6Ex3E

Framebuffer

e You will need this for:

Shadow

Reflection

Motion Blur

Screen space ambient occlusion

Screen space reflection (commonly used in modern game/engine, such as BF5, Unity3D)

O O O O O

O
e We may want RGB/normal/depth images from some specific perspectives, and use them

later for different graphical effects.
o Shadow - depth images from the perspective of the light
o SSAO - screen-space normal image, etc

Framebuffer

framebuffer configuration

unsigned int framebuffer;

glGenFramebuffers(l, &framebuffer);
glBindFramebuffer (GL FRAMEBUFFER, framebuffer);

// create a color attachment texture

unsigned int textureColorbuffer;

glGenTextures(l, &textureColorbuffer);
glBindTexture (GL TEXTURE 2D, textureColorbuffer);
ngexImage2D(GL_TEXTURE_ZD, ;, GL RGB, SCR WIDTH, SCR_HEIGHT,
ngeXParameteri(GL_TEXTURE_2D, GL TEXTURE MIN FILTER, GL_LINEAR);
ngexParameteri(GL_TEXTURE_ZD, GL TEXTURE MAG FILTER, GL_LINEAR);

glFramebufferTexture2D(GL FRAMEBUFFER, GL_ COLOR ATTACHMENTO, GL TEXTURE 2D, textureColorbuffer,

gredte a renderbuffer ob) for pt 1d sten attachment (we won't be sampling these)
unsigned int rbo;
glGenRenderbuffers(l, &rbo);
glBindRenderbuffer (GL RENDERBUFFER, rbo) ;
glRenderbufferStorage (GL _RENDERBUFFER, GL DEPTH24 STENCIL8, SCR WIDTH, SCR HEIGHT) ;
|// use a single renderbuffer object for both a depth AND stencil buffer.
glFramebufferRenderbuffer (GL FRAMEBUFFER, GL DEPTH STENCIL ATTACHMENT, GL_RENDERBUFFER, rbo);
// now actually attach it
// now that we actually created the framebuffer and added all attachments we want to check if
it is actually complete now
% (glCheckFramebufferStatus(GL FRAMEBUFFER) !'= GL FRAMEBUFFER COMPLETE)

cout << "ERROR::E FT :: Framebuffer is not complete!" << endl;
nglndFramebuffer(GL FRAMEBUFFER,),

, GL RGB, GL UNSIGNED BYTE, NULL) ;

Framebuffer

// first pass

glBindFramebuffer (GL FRAMEBUFFER, framebuffer);
glClearColor (¢ £ ; : ; ; AIEY

glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;
glEnable (GL DEPTH TEST) ;

DrawScene () ;

// second pass
glBindFramebuffer (GL FRAMEBUFFER,

gl€ClearColor(l.0f, 1), .
glClear (GL_COLOR BUFFER BIT),

screenShader.use () ;

glBindVertexArray (quadVAO) ;
glDisable (GL DEPTH TEST) ;
glBindTexture (GL TEXTURE 2D, textureColorbuffer);
glDrawArrays (GL TRIANGLES, -

