
Discussion 8
CSE167

Final Project - High-level Description

● Project include:
○ Blog (4 + 3 + 3 = 10 points)
○ Video (5 points)
○ Graphics Applications (85 points)
○ Extra Credit (10 points)

Final Project - Logistics

● Teams of 2 or 3.

● Grading:
○ Technical and creative merits.
○ Time: from 3 to 5:59 pm on December 12, 2019
○ Location:

■ Project grading: basement labs
■ Video Presentation: CSE 1242

○ Keep in mind:
■ 3 skill points per person: any combination of easy (1 pts), medium(2 pts) and hard (3 pts).
■ Maximum of 1 easy point will be counted for each person.
■ First blog should be up by on Wednesday Nov 27th at 11:59 pm. (4 points)

Blog Example

● First blog entry should include:
○ Name of your project
○ Names of your team members
○ 1 paragraph of the content of your project
○ Technical features that you are aiming for
○ Creative efforts
○ Picture (screenshot or sketch, DO NOT copy it from other people’s work!)

● Quite Town

https://chh145.wordpress.com/

Demo 1 Pong In 3D

Effects:

1. Easy:
a. Sound effects
b. Collision Detection
c. First person camera

control with player
movements

2. Extra Credit:
a. Motion blur
b. Depth of Field

3. Creative Efforts:
a. Arena selection
b. Opponent selection

 * The levels of difficulty varies from last time the course is offered, the description here matches current requirements.

https://www.youtube.com/watch?v=5pb64o9Ni4M&list=PLgrNWQ9zqY8Zn9lsHzvQWikCJrX5VUoYg&index=3&t=0s
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch27.html
http://www.youtube.com/watch?v=5pb64o9Ni4M

Demo 2 Reflections to Projections: Lief In a
2D World

Effects:

1. Easy:
a. Collision detection
b. Sound effects

2. Medium:
a. Procedurally generated terrain
b. Shadow mapping
c. Water effect with reflection and refraction

3. Extra credit:
a. Water effect with reflection of 3D models

4. Creative effort:
a. Creative content and game design
b. Player options

https://www.youtube.com/watch?v=mOlHwiSQaqU&list=PLgrNWQ9zqY8Zn9lsHzvQWikCJrX5VUoYg&index=15&t=0s
https://www.youtube.com/watch?v=mOlHwiSQaqU&list=PLgrNWQ9zqY8Zn9lsHzvQWikCJrX5VUoYg&index=15&t=0s
http://www.youtube.com/watch?v=mOlHwiSQaqU

Demo 3 Quiet Town
Effects:

1. Easy:
a. Toon shading
b. Sound effects
c. First person camera control with player

movements

2. Medium:
a. Shadow mapping
b. Procedural cloud
c. Procedural Ocean with fractal brownian

motion based height field

3. Hard:
a. Fully dynamic god ray with rasterized

fragments as occluders

4. Extra credit:
a. Skylight ambient occlusion

https://www.youtube.com/watch?v=v_ZQwNfg3y4&list=PLgrNWQ9zqY8Zn9lsHzvQWikCJrX5VUoYg&index=43&t=0s
http://www.youtube.com/watch?v=v_ZQwNfg3y4

Recommendations on technical difficulties

● Easy: (1 skill point)
○ Toon shading
○ Glow, bloom or halo effect
○ Particle effect
○ Procedurally modeled buildings (no shape grammar)
○ Sound effects
○ Collision detection with bounding spheres or boxes
○ Selection buffer for selection with the mouse
○ First person camera control with player movements

https://www.opengl.org/archives/resources/faq/technical/selection.htm

Recommendations on technical difficulties

● Medium: (2 skill points)
○ Bump mapping
○ Surface made with at least two C1 continuous Bezier patches (e.g., flag, water surface, etc.)
○ Procedurally modeled city (no shape grammar)
○ Procedurally generated terrain
○ Procedurally generated plants with L-systems
○ Procedurally modeled buildings with shape grammar
○ Water effect with reflection and refraction
○ Shadow mapping
○ Procedurally generated and animated clouds

Recommendations on technical difficulties

● Hard: (3 skill points)
○ Displacement mapping
○ Screen space post-processed lights
○ Collision detection with arbitrary geometry
○ Shadow Volumes

Recommendations on technical difficulties

● Extra Credit: (maximum 10 points)
○ Advanced Effects (3 pts each)

■ Water effect with reflection of 3D models (doesn't stack with regular water effect)
■ Screen space ambient occlusion (SSAO) or Screen space directional occlusion (SSDO)
■ Motion blur (tutorial link)
■ Depth of Field

○ Virtual Reality (10 pts)

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch27.html

Particle effect

● Large amount of particles (sprites, points, or anything) follow some combinations of

physical and non-physical rules

● At least 200 particles are needed for the final project

● Including two separate stages:
○ Simulation stage:

■ Control spawning and lifetime of particles
■ Apply transformation updates

○ Rendering stage:
■ Update positions of all particles to VBO
■ Use GL_POINT to render or utilize Instanced Rendering if you want to render each particle

with geometry other than point

http://ogldev.atspace.co.uk/www/tutorial33/tutorial33.html

Particle effect

● Simulation stage

● (You don’t have to follow

this implementation)

Particle effect

● Check more

http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/

Sound effect

● OpenAL is a pre-approved library for sound effect in the final project

● Requirements:
○ Background music
○ Sounds triggered by events
○ Sounds should be able to play at the same time

● As you might guess, OpenAL’s API naming convention follows the OpenGL one

● Create current context and use it during the application lifetime

● “Render” audio using audio context in the “audio scene” (similar to render using opengl

context in graphics scene)

● Note: this API deals with audio streams (raw PCM format) instead of with audio codecs.

Sound effect (OpenAL)

● Context: where to play the sound, you can think Window inside of OpenGL

● Listener: OpenAL supports 3D audio, so listener information is very important

● Sources: Information for sound sources

● Buffer: Content responsible for the sound source

● Simple example

http://www.david-amador.com/2011/06/playing-sound-using-openal/

Sound effect (OpenAL)

● Code samples to modify

listener and audio source

properties

Bump Mapping

● TBN matrix: A rotation matrix that can transform a vector in tangent space to world space

● Normal map data are in tangent space

● In order to utilize normal map data, you can:
○ Either transform normal map data to world space by multiplying with TBN matrix
○ Or transform light direction, eye position, etc to tangent space by multiplying with transpose(TBN)

● Algorithm to calculate TBN matrix and its derivation: Tutorial

https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Bump Mapping

http://www.youtube.com/watch?v=Xark6k6Ex3E

Framebuffer

● You will need this for:
○ Shadow
○ Reflection
○ Motion Blur
○ Screen space ambient occlusion
○ Screen space reflection (commonly used in modern game/engine, such as BF5, Unity3D)
○ …

● We may want RGB/normal/depth images from some specific perspectives, and use them

later for different graphical effects.
○ Shadow - depth images from the perspective of the light
○ SSAO - screen-space normal image, etc

Framebuffer

●

Framebuffer

●

