CSE 167:
 Introduction to Computer Graphics Lecture \#6: Color

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2012

Announcements

- Homework project \#3 due this Friday, October 19
- To be presented starting I:30pm in lab 260
- Late submissions for project \#2 accepted
- Please check grades in Ted
- Any problems with Ted?
- Discussion groups
- Grades

Lecture Overview

- Review: Barycentric Coordinates

Color Interpolation

- What if a triangle's vertex colors are different?
- Need to interpolate across triangle
- How to calculate interpolation weights?

Implicit 2D Lines

- Given two 2D points \mathbf{a}, \mathbf{b}
- Define function $f_{\mathbf{a b}}(\mathbf{p})$ such that $f_{\mathbf{a b}}(\mathbf{p})=0$ if \mathbf{p} lies on the line defined by \mathbf{a}, \mathbf{b}

Implicit 2D Lines

- Point \mathbf{p} lies on the line, if \mathbf{p}-a is perpendicular to the normal \mathbf{n} of the line

$$
n=\left(a_{y}-b_{y}, b_{x}-a_{x}\right) \quad p
$$

- Use dot product to determine on which side of the line \mathbf{p} lies. If $f(\mathbf{p})>0, p$ is on same side as normal, if $f(\mathbf{p})<0 \mathbf{p}$ is on opposite side. If dot product is $0, \mathbf{p}$ lies on the line.

$$
f_{\mathbf{a b}}(\mathbf{p})=\left(a_{y}-b_{y}, b_{x}-a_{x}\right) \cdot\left(p_{x}-a_{x}, p_{y}-a_{y}\right)
$$

Barycentric Coordinates

- Coordinates for 2D plane defined by triangle vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}$
- Any point \mathbf{p} in the plane defined by $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is $\mathbf{p}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})$
- Solved for $\mathrm{a}, \mathrm{b}, \mathrm{c}$:
$\mathbf{p}=(\mathrm{I}-\beta-\gamma) \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$

- We define $\alpha=\mathrm{I}-\beta-\gamma$
$\Rightarrow \mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$
- α, β, γ are called barycentric coordinates
- If we imagine masses equal to α, β, γ in the locations of the vertices of the triangle, the center of mass (the Barycenter) is then p.This is the origin of the term "barycentric" (introduced 1827 by Möbius)

Barycentric Interpolation

- Interpolate values across triangles, e.g., colors
- Done by linear interpolation on triangle:

$$
c(\mathbf{p})=\alpha(\mathbf{p}) c_{\mathbf{a}}+\beta(\mathbf{p}) c_{\mathbf{b}}+\gamma(\mathbf{p}) c_{\mathbf{c}}
$$

- Works well at common edges of neighboring triangles

Barycentric Coordinates

- Demo Applet:

b http://www.ccs.neu.edu/home/suhail/BaryTriangles/applet.htm

Barycentric Coordinates Applet

Lecture Overview

Color

- Physical background
- Color perception
- Color spaces
- Color reproduction on computer monitors

Light

Physical models

- Electromagnetic waves [Maxwell I862]
- Photons (tiny particles) [Planck 1900]
- Wave-particle duality [Einstein, early 1900]
"It depends on the experiment you are doing whether light behaves as particles or waves"
- Simplified models in computer graphics

Electromagnetic Waves

- Large range of frequencies

Gamma rays, X-rays Ultra-violet Visible light nuclear radiation light

Infrared,
Radiowaves

Visible Light

Frequency

Wavelength: $1 \mathrm{~nm}=10^{\wedge}-9$ meters speed of light = wavelength * frequency
Example 91.1MHz: $\quad \frac{300 * 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}}{91.1 * 10^{6} \frac{1}{s}}=3.29 \mathrm{~m}$

Light Transport

Simplified model in computer graphics

- Light is transported along straight rays
- Rays carry a spectrum of electromagnetic energy

\uparrow Energy

Limitations

- OpenGL ignores wave nature of light
$\downarrow \rightarrow$ no diffraction effects

Diffraction pattern of a small square aperture

Surface of a CD shows diffraction grating

Lecture Overview

Color

- Physical background
- Color perception
- Color spaces
- Color reproduction on computer monitors

Light and Color

- Different spectra may be perceived as the same color

Color Perception

- Photoreceptor cells
- Light sensitive
- Two types, rods and cones

Distribution of Cones and Rods

Photoreceptor Cells

Rods

- More than I,000 times more sensitive than cones
- Low light vision
- Brightness perception only, no color
- Predominate in peripheral vision

Cones

- Responsible for high-resolution vision
- 3 types of cones for different wavelengths (LMS):
- L:long, red
- M: medium, green
- S: short, blue

Photoreceptor Cells

The Austrian naturalist Karl von Frisch has demonstrated that honeybees, although blind to red light, distinguish at least four different color regions, namely:
b yellow (including orange and yellow green)

- blue green
- blue (including purple and violet)
- ultraviolet
(Source: Encyclopedia Britannica)

Photoreceptor Cells

- Response curves $s(\lambda), m(\lambda), l(\lambda)$ to monochromatic spectral stimuli

- Experimentally determined in the 1980s

Photoreceptor Cells

- Response curves $s(\lambda), m(\lambda), l(\lambda)$ to monochromatic spectral stimuli

- Experimentally determined in the 1980s

Photoreceptor Cells

- Response curves $s(\lambda), m(\lambda), l(\lambda)$ to monochromatic spectral stimuli

- Experimentally determined in the 1980s

Response to Arbitrary Spectrum

- Arbitrary spectrum as sum of"mono-chromatic" spectra
"Monochromatic" spectra, width h

$+$

Wavelength
Arbitrary spectrum
$\sum_{i} L_{i}(\lambda) \boldsymbol{\Perp}$

Response to Arbitrary Spectrum

Assume linearity (superposition principle)

- Response to sum of spectra is equal to sum of responses to each spectrum
- S-cone response ${ }_{s}=\sum_{i} s(\lambda) h L_{i}(\lambda)$

Input: light intensity $L(\lambda)$ impulse width h Response to monochromatic impulse $s(\lambda)$

- In the limit $h \rightarrow 0$

$$
\text { response }_{s}=\int s(\lambda) L(\lambda) d \lambda
$$

Response to Arbitrary Spectrum

Stimulus

Response curves

Multiply

Integrate

Metamers

- Different spectra, same response
- Cannot distinguish spectra
- Arbitrary spectrum is infinitely dimensional (has infinite number of degrees of freedom)
- Response has three dimensions
- Information is lost

Perceived color: red $=$ Perceived color: red

Color Blindness

- One type of cone missing, damaged
- Different types of color blindness, depending on type of cone
- Can distinguish even fewer colors
- But we are all a little color blind...

Lecture Overview

Color

- Physical background
- Color perception
- Color spaces
- Color reproduction on computer monitors

Color Reproduction

- How can we reproduce, represent color?
, One option: store full spectrum
- Representation should be as compact as possible
- Any pair of colors that can be distinguished by humans should have two different representations

Color Spaces

- Set of parameters describing a color sensation
- "Coordinate system" for colors
- Three types of cones, expect three parameters to be sufficient
- Why not use L,M,S cone responses?

Color Spaces

- Set of parameters describing a color sensation
- "Coordinate system" for colors
- Three types of cones, expect three parameters to be sufficient
- Why not use L,M,S cone responses?
- Not known until I980s!

Trichromatic Theory

- Claims any color can be represented as a weighted sum of three primary colors
- Propose red, green, blue as primaries
- Developed in $18^{\text {th }}, 19^{\text {th }}$ century, before discovery of photoreceptor cells (Thomas Young, Hermann von Helmholtz)

Tristimulus Experiment

- Given arbitrary color, want to know the weights for the three primaries
- Tristimulus value
- Experimental solution
- CIE (Commission Internationale de l'Eclairage, International Commission on Illumination), circa 1920

Tristimulus Experiment

- Determine tristimulus values for spectral colors exderimentally

The observer adjusts the intensities of the red, green, and blue lamps until they

Tristimulus Experiment

- Spectral primary colors were chosen
- Blue (435.8nm), green (546.Inm), red (700nm)
- Matching curves for monochromatic target

Weight for red primary

- Negative values!

Target (580nm)

Tristimulus Experiment

Negative values

- Some spectral colors could not be matched by primaries in the experiment
"Trick"
- One primary could be added to the source (stimulus)
- Match with the other two
* Weight of primary added to the source is considered negative

Photoreceptor response vs. matching curve

- Not the same!

Tristimulus Values

- Matching values for a sum of spectra with small spikes are the same as sum of matching values for the spikes
- Monochromatic matching curves $\bar{r}(\lambda), \bar{g}(\lambda), \bar{b}(\lambda)$
- In the limit (spikes are infinitely narrow)

$$
\begin{aligned}
R & =\int \bar{r}(\lambda) L(\lambda) d \lambda \\
G & =\int \bar{g}(\lambda) L(\lambda) d \lambda \\
B & =\int \bar{b}(\lambda) L(\lambda) d \lambda
\end{aligned}
$$

CIE Color Spaces

- Matching curves $\bar{r}(\lambda), \bar{g}(\lambda), \bar{b}(\lambda)$ define CIE RGB color space
- CIE RGB values are color "coordinates"
- CIE was not satisfied with range of RGB values for visible colors
- Defined CIE XYZ color space
- Most commonly used color space today

CIE XYZ Color Space

- Determined coefficients such that
- Y corresponds to an experimentally determined brightness
- No negative values in matching curves
, White is $X Y Z=(1 / 3, I / 3,1 / 3)$
- Linear transformation of CIE RGB:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\frac{1}{b_{21}}\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\frac{1}{0.17697}\left[\begin{array}{ccc}
0.49 & 0.31 & 0.20 \\
0.17697 & 0.81240 & 0.01063 \\
0.00 & 0.01 & 0.99
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

CIE XYZ Color Space

Matching curves

- No corresponding physical primaries

Tristimulus values

- Always positive!

$X=\int \bar{x}(\lambda) L(\lambda) d \lambda$
$Y=\int \bar{y}(\lambda) L(\lambda) d \lambda$
$Z=\int \bar{z}(\lambda) L(\lambda) d \lambda$

Summary

- CIE color spaces are defined by matching curves
- At each wavelength, matching curves give weights of primaries needed to produce color perception of that wavelength
- CIE RGB matching curves determined using tristimulus experiment
- Each distinct color perception has unique coordinates
- CIE RGB values may be negative
- CIE XYZ values are always positive

Lecture Overview

Color

- Physical background
- Color perception
- Color spaces
- Color reproduction on computer monitors

Summary

- CIE color spaces are defined by matching curves
- At each wavelength, matching curves give weights of primaries needed to produce color perception of that wavelength
- CIE RGB matching curves determined using trisimulus experiment
- Each distinct color perception has unique coordinates
- CIE RGB values may be negative
- CIE XYZ values are always positive

CIE XYZ Color Space

Visualization

- Interpret XYZ as 3D coordinates
- Plot corresponding color at each point
- Many XYZ values do not correspond to visible colors

Chromaticity Diagram

- Project from XYZ coordinates to 2D for more convenient visualization

$$
x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z} \quad z=\frac{Z}{X+Y+Z}
$$

- Drop z-coordinate

Chromaticity Diagram

- Factor out luminance (perceived brightness) and chromaticity (hue)
> x,y represent chromaticity of a color

$$
x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z} \quad 0 \leq x, y \leq 1
$$

- Y is luminance
- CIE xyY color space
- Reconstruct XYZ values from xyY

$$
X=\frac{Y}{y} x \quad Z=\frac{Y}{y}(1-x-y)
$$

Chromaticity Diagram

- Visualizes x,y plane (chromaticities)
- Pure spectral colors on boundary

Colors shown do not correspond to colors represented by (x, y) coordinates!

Chromaticity Diagram

- Visualizes x,y plane (chromaticities)
- Pure spectral colors on boundary
- Weighted sum of any two colors lies on line connecting colors

Colors shown do not correspond to colors represented by (x, y) coordinates!

Chromaticity Diagram

- Visualizes x,y plane (chromaticities)
- Pure spectral colors on boundary
- Weighted sum of any two colors lies on line connecting colors
- Weighted sum of any number of colors lies in convex hull of colors (gamut)

Colors shown do not correspond to colors represented by (x, y) coordinates!

Gamut

- Any device based on three primaries can only produce colors within the triangle spanned by the primaries
- Points outside gamut correspond to negative weights of primaries

Gamut of CIE RGB primaries

Gamut of typical CRT monitor

RGB Monitors

- Given red, green, blue (RBG) values, what color will your monitor produce?
- I.e., what are the CIE XYZ or CIE RGB coordinates of the displayed color?
- How are OpenGL RGB values related to CIE XYZ, CIE RGB?
- Often you don't know!
- OpenGL RGB = CIE XYZ, CIE RGB

Gamut of CIE RGB primaries

Gamut of typical CRT monitor

