CSE 165: 3D User Interaction

Lecture #10: Navigation

Instructor: Jurgen Schulze, Ph.D.

Announcements

• Homework Assignment #3

- Due February 13th at 1:00pm
- Update on Move driver issues
- Device swapping opportunity
- Next week:
 - Lecture on Tuesday held by TA Dylan
 - Instructor's office hour moves to Thursday after class (3:30-4:30pm)

Move Buttons

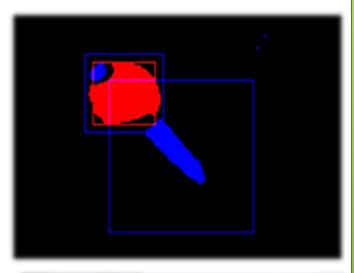
- Four buttons (Square, Triangle, Cross, Circle) on front
- Two buttons (Select on left, Start on right) on sides
- Big Move button front center
- Small PS button on front with PlayStation Logo
 - Used as power button to switch on the controller
 - Holding it for about 10 seconds will turn off the controller
 - cannot be overwritten by software
- Trigger button on back, can be used as
 - a digital button
 - an analog button with an 8-bit value

Move – Controller

- Accelerometer (16 bit)
 - Kionix KXSC4 10227 2410 (3-axis)
- Gyroscope (16 bit)
 - 2 chips: one for x and y (STM LPR425AL), one for z axis (Y5250H 2029 K8QEZ)
- Magnetometer (12 bit)
 - AKM AK8974 magnetic compass
 - helps to calibrate and correct for drift
- Temperature sensor
- Microcontroller (STM32F103VBT6)
- Bluetooth module (Cambridge Silicon Radio BC4RE), sending 60 updates/sec
- Mini USB connector
- 44mm diameter sphere with RGB LEDs
 - Used for position tracking
 - Invariant to rotation
 - Provides own light source
 - Color ensures visual uniqueness

www.hardwaresphere.com

Move - Camera


- PlayStation Eye
 - 640 x 480 (60Hz)
 - 320 x 240 (120Hz)
 - Microphone array (4 mics)
 - Manual exposure control

Move – 6 DOF Tracking

• Image Analysis

- Find sphere in image with segmentation algorithm
- Given known focal length and measured size of sphere in image, calculate 3D position
- Sensor Fusion
 - Combines results from image analysis with inertial sensors
 - Accelerometer
 - Gives pitch and roll angles when controller is stationary
 - Gives controller acceleration when orientation is known
 - Gyroscope
 - Measures angular velocity and acceleration

7

Navigation

Wayfinding – Cognitive Component Travel – Motor Component

Wayfinding

- Cognitive process of defining a path through an environment
 - o use and acquire spatial knowledge
 - aided by natural and artificial cues
- Common activity in our daily lives
- Often unconscious activity (except when we are lost)

Information for the Wayfinding Task

- Landmarks
- Signs
- Maps
- Directional information

Transferring Spatial Knowledge

- Want to transfer knowledge to the real world
 - training
 - planning
- Navigation through complex environments to support other tasks

Wayfinding in 3DUIs

- Difficult problem
- Differences between wayfinding in real world and virtual world
 - unconstrained movement
 - absence of physical constraints
 - lack of realistic motion cues
- 3DUIs can provide a wealth of information

Wayfinding and Travel

- Exploration
 - browsing environment
 - useful in building cognitive map
- Search
 - spatial knowledge acquired and used
 - naïve search not enough info in cognitive map
 - primed search use of cognitive map defines success
- Maneuvering
 - uses very little of cognitive map

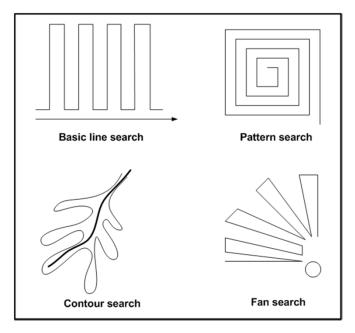
Wayfinding and Spatial Knowledge

- Landmark knowledge
 - visual characteristics of environment
 - shape, size, and texture
- Procedural knowledge
 - sequence of actions required to follow a path
 - requires sparse visual information
- Survey knowledge
 - topographical knowledge
 - object location/distance/orientation

Egocentric and Exocentric Reference Frames

- Egomotion feeling we are the center of space
- Egocentric first person
 - relative to human body
- Exocentric third person
 - relative to world
- Build up exocentric representation of world
 - survey knowledge
- Use egocentric when exploring for first time
 - landmark/procedural knowledge

User-Centered Wayfinding Support (1)


- Field of view
 - small FOV can inhibit wayfinding
 - user requires repetitive head movements
 - lack of optical flow in periphery
- Motion cues
 - enable judgment of depth and direction
 - supports backtracking of user's own movement
 - cue conflicts can hinder cognitive map development
- Multisensory Output
 - o audio
 - Tactile maps

Tactile Map

User-Centered Wayfinding Support (2)

- Presence (feeling of "being there")
 - o assumed to have impact on spatial knowledge
 - o closer to real world
- Search strategies

3D UI With the Leap

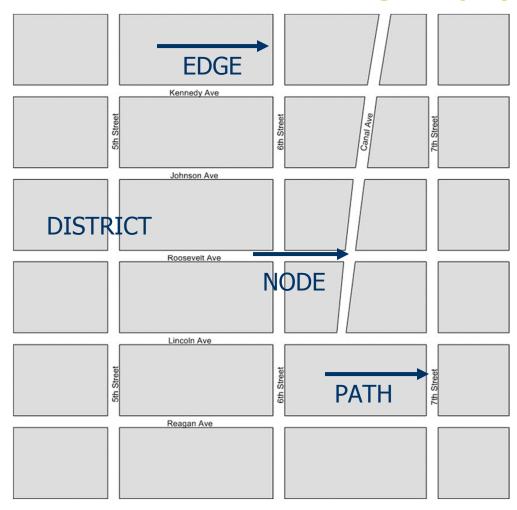
- Selection
 - Hover w/timeout
 - Trigger with non-dominant hand gesture
 - Two finger near-pinch
- Manipulation
 - Hand orientation
 - 3-finger orientation
 - 2-finger orientation (2 DOF)

Menus

- Hover over buttons
- Leap API-Supported gestures:
 - Rotate
 - Swipe

General Tips

- Finger pinches hard to detect
- More than 3 fingers hard to distinguish
- Fingers hard to distinguish when hand not close to horizontal
- Hand detection (left/right): need to bring hands into FOV from back edge
- Options for camera motion: rotate around circle, set with non-dominant hand, map orientation of non-dominant hand

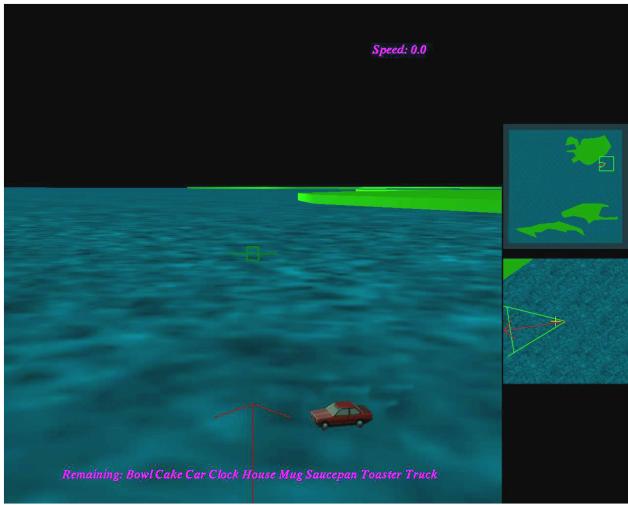

Environment-Centered Wayfinding Support

- Environmental design
- Artificial aids

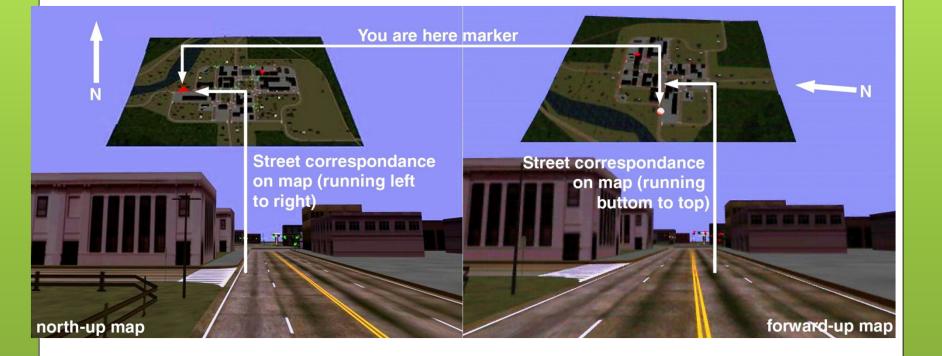
Environmental Design (1)

- World's structure and format can aid in wayfinding
- Legibility techniques
 - divide large scale environment into parts with distinct character
 - create simple spatial organization
 - include directional cues to support egocentric/exocentric reference frames
 - o often repetitive

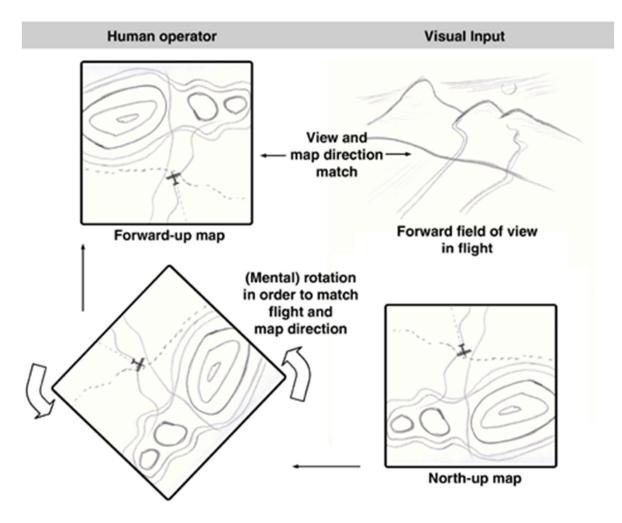
Environmental Design (2)


Environmental Design (3)

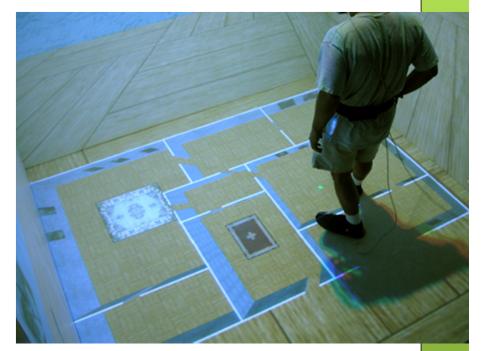
- Natural environment
 - horizon, atmospheric color, fog, etc...
- Architectural design
 - lighting
 - closed and open spaces
- Color and texture


Artificial Cues

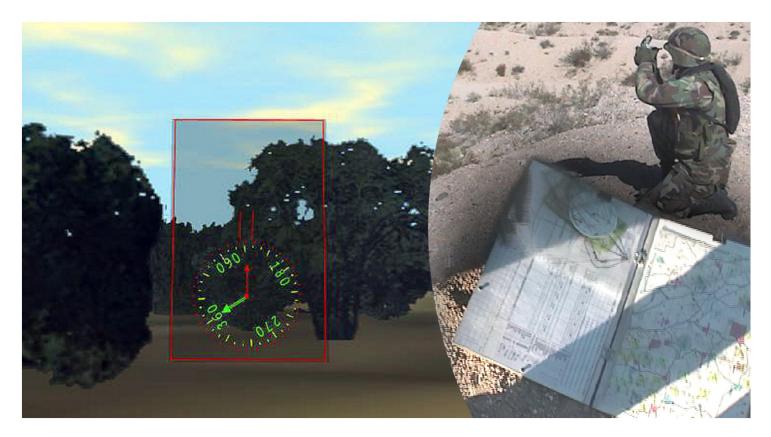
- Maps
- Compasses
- Signs
- Reference objects
- Artificial landmarks
- Trails


Maps (1)

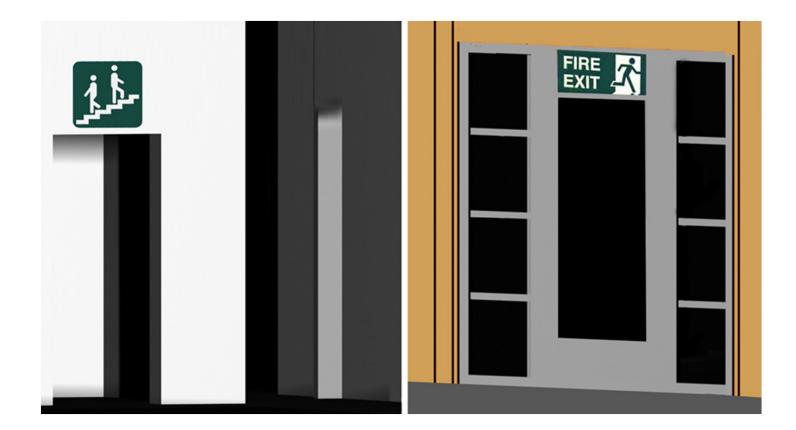
Maps (3)



Maps (2)



Maps (4)



Compasses

Signs

Reference Objects

Objects that have well known size
chair, human figure, etc...
Useful to estimate distances

Artificial Landmarks

- Local help users in decision making processes
- Global seen from any location

Trails

• Help user retrace steps

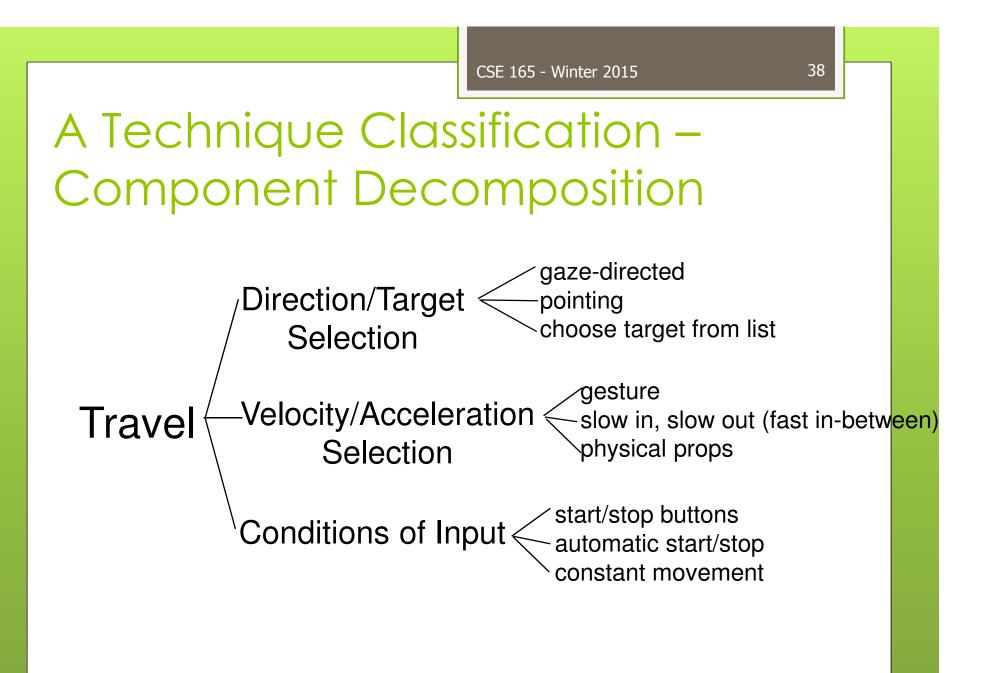
• Show what parts have been visited

34

Navigation

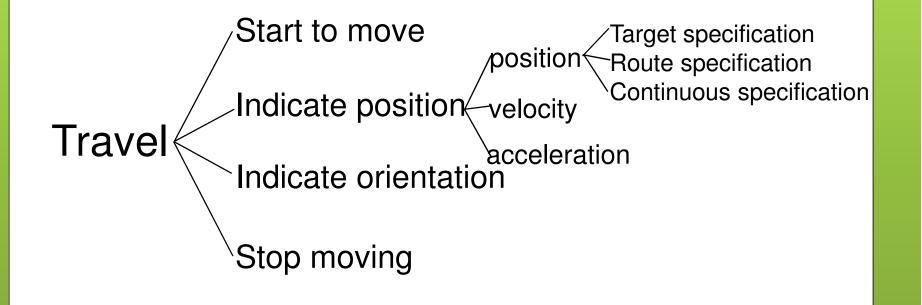
Wayfinding – Cognitive Component Travel – Motor Component

Travel


- The motor component of navigation
 - Good travel techniques integrate aids to wayfinding
- Movement between two locations, setting the position (and orientation) of the user's viewpoint
- The most basic and common VE interaction technique, used in almost any large-scale VE

Travel Tasks

- Exploration
 - travel which has no specific target
 - build knowledge of environment
- Search
 - naïve: travel to find a target whose position is not known
 - primed: travel to a target whose position is known
 - build layout knowledge; move to task location
- Maneuvering
 - travel to position viewpoint for task
 - short, precise movements


Travel Characteristics

- Travel distance
- Amount of curvature/number of turns in path
- Target visibility
- DOF required
- Accuracy required
- Other tasks during travel
- Active vs. passive
- Physical vs. virtual

From: Bowman, Koller, and Hodges, Travel in Immersive Virtual Environments. IEEE VRAIS '97

Alternate Technique Classification – User Control Level

Travel Techniques

- Physical locomotion ("natural" metaphors)
- Steering techniques
- Route planning
- Target-based techniques
- Manual manipulation
- Viewpoint orientation techniques

Physical Locomotion Techniques

- Walking techniques
 - Large-scale tracking
 - Walking in place
- Treadmills
 - single-direction with steering (Gait Master)
 - o omni-directional
- Bicycles
- Other physical motion techniques
 - Magic carpet
 - Disney's river raft ride

Large Scale Tracking

Omni-Directional Treadmill

• Video:

• <u>http://www.youtube.com/watch?v=BQw1t</u> <u>sgrJOs</u>

44

Omni

• <u>https://www.kickstarter.com/projects/1944625487/omni-</u> <u>move-naturally-in-your-favorite-game</u>

