
CSE 167:

Introduction to Computer Graphics

Lecture #5: Rasterization

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2015

Announcements

� Project 2 due tomorrow at 2pm

� Grading window is 2-3:30pm

� Upload source code to Ted by 2pm

� Project 3 discussion next Monday at 3pm

2

Lecture Overview

� Barycentric Coordinates

� Rendering Pipeline

� Rasterization

� Visibility

3

Color Interpolation

� What if a triangle’s vertex colors are different?

� Need to interpolate across triangle

� How to calculate interpolation weights?

4

Source: efg’s computer lab

Implicit 2D Lines

� Given two 2D points a, b

� Define function such that
if p lies on the line defined by a, b

5

Implicit 2D Lines

� Point p lies on the line, if p-a is perpendicular to the
normal n of the line

� Use dot product to determine on which side of the
line p lies. If f(p)>0, p is on same side as normal, if
f(p)<0 p is on opposite side. If dot product is 0, p lies
on the line.

6

n=(ay-by, bx-ax)

p-a=(px-ax, py-ay)

Barycentric Coordinates

� Coordinates for 2D plane defined by
triangle vertices a, b, c

� Any point p in the plane defined by a, b, c is
p = a + β (b - a) + γ (c - a)

� Solved for a, b, c:
p= (1 – β – γ) a + β b + γ c

� We define α = 1 – β – γ
� p = α a + β b + γ c

� α, β, γ are called barycentric coordinates

� If we imagine masses equal to α, β, γ in the locations of the
vertices of the triangle, the center of mass (the Barycenter) is
then p. This is the origin of the term “barycentric” (introduced
1827 by Möbius)
7

Barycentric Interpolation

� Interpolate values across triangles, e.g., colors

� Done by linear interpolation
on triangle:

� Works well at common edges of neighboring triangles

8

Barycentric Coordinates

� Demo:
� http://adrianboeing.blogspot.com/2010/01/barycentric-coordinates.html

9

Lecture Overview

� Barycentric Coordinates

� Rendering Pipeline

� Rasterization

� Visibility

10

Rendering Pipeline

Scene data

Image

� Hardware and software which
draws 3D scenes on the screen

� Consists of several stages
� Simplified version here

� Most operations performed by
specialized hardware (GPU)

� Access to hardware through
low-level 3D API (OpenGL,
DirectX)

� All scene data flows through
the pipeline at least once for
each frame

Rendering

pipeline

11

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Textures, lights, etc.

� Geometry

� Vertices and how they are
connected

� Triangles, lines, points, triangle
strips

� Attributes such as color

� Specified in object coordinates

� Processed by the rendering
pipeline one-by-one

12

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Transform object to camera
coordinates

� Specified by
GL_MODELVIEW matrix
in OpenGL

� User computes
GL_MODELVIEW matrix
as discussed

MODELVIEW

matrix

13

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Look up light sources

� Compute color for each
vertex

14

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Project 3D vertices to 2D
image positions

� GL_PROJECTION matrix

15

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Draw primitives (triangles,
lines, etc.)

� Determine what is visible

16

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image � Pixel colors
17

Rendering Engine

Scene data

Image

Rendering Engine:

� Additional software layer
encapsulating low-level API

� Higher level functionality than
OpenGL

� Platform independent

� Layered software architecture
common in industry

� Game engines

� Graphics middleware

Rendering

pipeline

18

Lecture Overview

� Barycentric Coordinates

� Rendering Pipeline

� Rasterization

� Visibility

19

Rendering Pipeline

Modeling and Viewing

Transformation

Shading

Projection

Rasteriztion,

Visibility

Primitives

Image

• Scan conversion and

rasterization are synonyms

• One of the main operations

performed by GPU

• Draw triangles, lines, points

(squares)

• Focus on triangles in this

lecture
20

Rasterization

21

Rasterization

� Given vertices in pixel coordinates

World space

Camera space

Clip space

Image space

Pixel coordinates

22

Rasterization

� How many pixels can a modern graphics processor draw
per second?

23

Rasterization

� How many pixels can a modern graphics processor draw
per second?

� NVidia GeForce GTX 980

� 144 billion pixels per second

� Multiple of what the fastest CPU could do

24

Rasterization

� Many different algorithms

� Old style

� Rasterize edges first

25

Rasterization

� Many different algorithms

� Example:

� Rasterize edges first

� Fill the spans (scan lines)

� Disadvantage:

� Requires clipping

26

Source: http://www.arcsynthesis.org

Rasterization

� Given vertices in pixel coordinates

World space

Camera space

Clip space

Image space

Pixel coordinates

27

Rasterization

� Simple algorithm
compute bbox

clip bbox to screen limits

for all pixels [x,y] in bbox

compute barycentric coordinates alpha, beta, gamma

if 0<alpha,beta,gamma<1 //pixel in triangle

image[x,y]=triangleColor

� Bounding box clipping trivial

28

Rasterization

� So far, we compute barycentric coordinates of many
useless pixels

� How can this be improved?

29

Rasterization

Hierarchy

• If block of pixels is outside triangle, no need to test

individual pixels

• Can have several levels, usually two-level

• Find right granularity and size of blocks for optimal

performance

30

2D Triangle-Rectangle Intersection

� If one of the following tests returns true, the triangle
intersects the rectangle:

� Test if any of the triangle’s vertices are inside the rectangle
(e.g., by comparing the x/y coordinates to the min/max x/y
coordinates of the rectangle)

� Test if one of the quad’s vertices is inside the triangle (e.g.,
using barycentric coordinates)

� Intersect all edges of the triangle with all edges of the rectangle

31

Lecture Overview

� Barycentric Coordinates

� Rendering Pipeline

� Rasterization

� Visibility

32

Visibility

• At each pixel, we need to

determine which triangle

is visible

33

Painter’s Algorithm

� Paint from back to front

� Every new pixel always paints over previous pixel in frame
buffer

� Need to sort geometry according to depth

� May need to split triangles if they intersect

� Outdated algorithm, created when memory was
expensive

34

Z-Buffering

� Store z-value for each pixel

� Depth test

� During rasterization, compare stored value to new value

� Update pixel only if new value is smaller
setpixel(int x, int y, color c, float z)

if(z<zbuffer(x,y)) then

zbuffer(x,y) = z

color(x,y) = c

� z-buffer is dedicated memory reserved for GPU
(graphics memory)

� Depth test is performed by GPU

35

Z-Buffering in OpenGL

� In your application:

� Ask for a depth buffer when you create your window.

� Place a call to glEnable (GL_DEPTH_TEST) in your program's
initialization routine.

� Ensure that your zNear and zFar clipping planes are set
correctly (in glOrtho, glFrustum or gluPerspective) and in a
way that provides adequate depth buffer precision.

� Pass GL_DEPTH_BUFFER_BIT as a parameter to glClear.

� Note that the z buffer is non-linear: it uses smaller depth
bins in the foreground, larger ones further from the
camera.

36

Z-Buffer Fighting

� Problem: polygons which are close together don’t get rendered
correctly. Errors change with camera perspective � flicker

� Cause: differently colored fragments from different polygons
are being rasterized to same pixel and depth � not clear
which is in front of which

� Solutions:

� move surfaces farther apart, so that fragments rasterize into different
depth bins

� bring near and far planes closer together

� use a higher precision depth buffer. Note that GLUT often defaults to 16
bit even if your graphics card supports 24 bit or 32 bit depth buffers

37

Translucent Geometry

� Need to depth sort translucent geometry and render
with Painter’s Algorithm (back to front)

� Problem: incorrect blending with cyclically overlapping
geometry

� Solutions:

� Storage of multiple depth and color values per pixel (not
practical in real-time graphics)

� Or back to front rendering of translucent geometry, after
rendering opaque geometry

� Does not always work correctly: programmer has to weight rendering
correctness against computational effort

38

