CSE 167:
 Introduction to Computer Graphics
 Lecture \#10: View Frustum Culling

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2015

Announcements

- Project 4 due tomorrow
- Project 5 discussion on Monday
- Midterm:
- Problem 5 a): no point deduction if R not normalized

Bounding Volumes

- Simple shape that completely encloses an object
- Generally a box or sphere
- We use spheres
- Easiest to work with

- But hard to calculate tight fits
- Intersect bounding volume with view frustum instead of each primitive

Bounding Box

- How to cull objects consisting of may polygons?
- Cull bounding box
- Rectangular box, parallel to object space coordinate planes
- Box is smallest box containing the entire object

Image: SGI OpenGL Optimizer Programmer's Guide

View Frustum Culling

- Frustum defined by 6 planes
- Each plane divides space into "outside","inside"
- Check each object against each plane
- Outside, inside, intersecting
- If "outside" all planes
- Outside the frustum
- If "inside" all planes
- Inside the frustum
- Else partly inside and partly out
- Efficiency

Distance to Plane

- A plane is described by a point \mathbf{p} on the plane and a unit normal \mathbf{n}
- Find the (perpendicular) distance from point \mathbf{x} to the plane
- \mathbf{X}

Distance to Plane

- The distance is the length of the projection of $\mathbf{x - p}$ onto n

$$
\operatorname{dist}=\overline{(\mathbf{x}-\mathbf{p})} \cdot \overrightarrow{\mathbf{n}}
$$

Distance to Plane

- The distance has a sign
p positive on the side of the plane the normal points to
- negative on the opposite side
- zero exactly on the plane
- Divides 3D space into two infinite half-spaces

$$
\operatorname{dist}(\mathbf{x})=\overrightarrow{(\mathbf{x}-\mathbf{p})} \cdot \overrightarrow{\mathbf{n}}
$$

Distance to Plane

- Simplification

$$
\begin{aligned}
\operatorname{dist}(\mathbf{x}) & =(\mathbf{x}-\mathbf{p}) \cdot \mathbf{n} \\
& =\mathbf{x} \cdot \mathbf{n}-\mathbf{p} \cdot \mathbf{n} \\
\operatorname{dist}(\mathbf{x}) & =\mathbf{x} \cdot \mathbf{n}-d, \quad d=\mathbf{p} \mathbf{n}
\end{aligned}
$$

- d is independent of \mathbf{x}
- d is distance from the origin to the plane
- We can represent a plane with just d and \mathbf{n}

Frustum With Signed Planes

- Normal of each plane points outside
b "outside" means positive distance
- "inside" means negative distance

Test Sphere and Plane

- For sphere with radius r and origin \mathbf{x}, test the distance to the origin, and see if it is beyond the radius
- Three cases:
- $\operatorname{dist}(\mathbf{x})>r$
- completely above
- $\operatorname{dist}(\mathbf{x})<-r$
- completely below
- $-r<\operatorname{dist}(\mathbf{x})<r$
- intersects

Culling Summary

- Pre-compute the normal \mathbf{n} and value d for each of the six planes.
- Given a sphere with center \mathbf{x} and radius r
- For each plane:
- if $\operatorname{dist}(\mathbf{x})>r$: sphere is outside! (no need to continue loop)
- add I to count if $\operatorname{dist}(\mathbf{x})<-r$
- If we made it through the loop, check the count:
v if the count is 6 , the sphere is completely inside
b otherwise the sphere intersects the frustum
- (can use a flag instead of a count)

Culling Groups of Objects

- Want to be able to cull the whole group quickly
- But if the group is partly in and partly out, want to be able to cull individual objects

Hierarchical Bounding Volumes

- Given hierarchy of objects
- Bounding volume of each node encloses the bounding volumes of all its children
- Start by testing the outermost bounding volume
- If it is entirely outside, don't draw the group at all
- If it is entirely inside, draw the whole group

Hierarchical Culling

- If the bounding volume is partly inside and partly outside
- Test each child's bounding volume individually
- If the child is in, draw it; if it's out cull it; if it's partly in and partly out, recurse.
- If recursion reaches a leaf node, draw it normally

Video

- Math for Game Developers - Frustum Culling
- http://www.youtube.com/watch?v=4p-E_3IXOPM

Culling

- Goal:

Discard geometry that does not need to be drawn to speed up rendering

- Types of culling:
- View frustum culling
- Occlusion culling
- Small object culling
- Backface culling
- Degenerate culling

Occlusion Culling

- Geometry hidden behind occluder cannot be seen
- Many complex algorithms exist to identify occluded geometry

Images: SGI OpenGL Optimizer Programmer's Guide

Video

- Umbra 3 Occlusion Culling explained
- http://www.youtube.com/watch?v=5h4QgDBwQhc

Small Object Culling

- Object projects to less than a specified size
- Cull objects whose screen-space bounding box is less than a threshold number of pixels

Backface Culling

- Consider triangles as "one-sided", i.e., only visible from the "front"
- Closed objects
" If the "back" of the triangle is facing the camera, it is not visible
- Gain efficiency by not drawing it (culling)
- Roughly 50% of triangles in a scene are back facing

Backface Culling

- Convention:

Triangle is front facing if vertices are ordered counterclockwise

- OpenGL allows one- or two-sided triangles
- One-sided triangles:
gIEnable(GL_CULLL_FACE); gICullFace(GL_BACK)
, Two-sided triangles (no backface culling):
gIDisable(GL_CULL_FACE)

Backface Culling

- Compute triangle normal after projection (homogeneous division)

$$
\mathbf{n}=\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \times\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right)
$$

- Third component of \mathbf{n} negative: front-facing, otherwise back-facing
- Remember: projection matrix is such that homogeneous division flips sign of third component

Degenerate Culling

- Degenerate triangle has no area
- Vertices lie in a straight line
- Vertices at the exact same place
- Normal $\mathbf{n}=0$

Source: Computer Methods in Applied Mechanics and Engineering, Volume 194, Issues 48-49

Rendering Pipeline

Primitives

Culling, Clipping

- Discard geometry that will not be visible

Level-of-Detail Techniques

- Don't draw objects smaller than a threshold
- Small feature culling
- Popping artifacts
- Replace 3D objects by 2D impostors
- Textured planes representing the objects

Impostor generation

- Adapt triangle count to projected size

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Modeling

- Creating 3D objects
- How to construct complex surfaces?
- Goal
- Specify objects with control points
- Objects should be visually pleasing (smooth)
- Start with curves, then generalize to surfaces
- Next: What can curves be used for?

Curves

- Surface of revolution

Curves

- Extruded/swept surfaces

Curves

- Animation
- Provide a "track" for objects
- Use as camera path

