CSE 165: 3D User Interaction

Lecture #18: 3D User Interface Design

# **Upcoming Deadlines**

- Sunday, March 7<sup>th</sup> at 11:59pm:
  - Homework project 4 due
- Monday, March 8<sup>th</sup> at 4pm:
  - Discussion Project 4 and Final Exam
- Sunday, March 14<sup>th</sup> at 11:59pm:
  - Homework project 4 late deadline
- Final Exam
  - 3 hour exam, no interruptions
  - To be taken in 24 hour window between 6pm Wed 3/17 and 6pm Thu 3/18

#### Announcements

• CAPE + TA evaluations

## **3D UI Presentations**

#### Juan Ramirez

- HexTouch: Affective Robot Touch for Complementary Interactions to Companion Agents in Virtual Reality
- o Yanxun Li
  - bHaptics' CES 2021 keynote in 3 minutes world's first native gaming haptic suit

## 3D UI Design Strategies

## Thus far...

• We covered universal 3D UI tasks

- Selection
- Manipulation
- Navigation
- System control
- Symbolic input

But: The combination of techniques and devices alone does not guarantee an **enjoyable** 3D UI experience!

## 3D UI Design – Designing for Humans

• Microlevel: implementation

- 3D interaction programming: hard!
- Testing: difficult and hard to automate
- Tweaking UI parameters: important but time consuming
- Macrolevel: guidelines
  - Strengths and limitations of human psychology/physiology
  - Common sense
    - Example: people naturally use 2 hands, so using 2 hands in a 3D UI might improve usability/performance

## Designing for Humans - Feedback

• Feedback is critical to usable 3D interfaces

- User feedback is any information conveyed to the user to help understand
  - system state
  - result of operation
  - status of task
- Feedback control mechanism
  - Example: turning a knob produces feedback by
    - external sources: the knob
    - internal sources: user's body
- Want to have appropriate feedback levels
- Ensure compliance (agreement) between different levels/types of feedback

#### **Designing for Humans – Compliance**

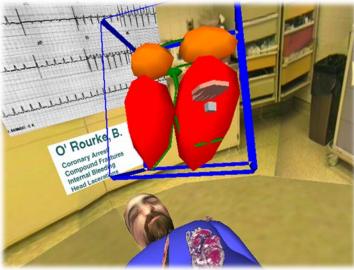
- **Compliance** is the main principle in design feedback
- Want different feedback dimensions to be synchronized
  - Maintain spatial and temporal correspondence between multiple feedback dimensions
- Feedback displacement is to be avoided
  - Example: hand and virtual object move in different directions

#### Designing for Humans – Spatial Compliance

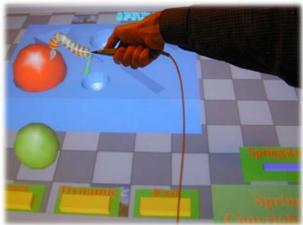
- Directional compliance virtual object should move in the same direction as manipulated by input device
- Nulling compliance when user returns device to initial pose, virtual object returns to corresponding initial pose
- Instrumental and operational feedback also require spatial compliance
  - Example: real and virtual hand should be aligned

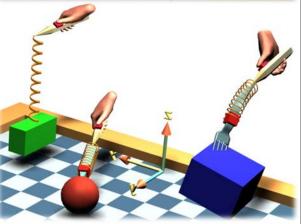
#### Designing for Humans – Temporal Compliance

• Latency – typical problem


- Temporal delay between user input and sensory feedback
- Variable latency can be even more problematic
- Solutions?
  - Reduce scene complexity
  - Faster hardware
  - Predictive tracking

### Designing for Humans – Feedback in Multiple Dimensions


- Sensory dimensions
  - Visual, auditory, tactile, olfactory
  - Proprioceptive: position relative to the body
  - Kinesthetic: bodily motion
- Want to try to give **multi-dimensional** feedback
  - Can be difficult due to technology limitations (eg, haptic feedback still in early stages)
  - Sensory feedback substitution
    - Example: visual/audio cues compensate for missing haptic feedback


### Designing for Humans – Feedback Substitution

- Cannot always support all sensory feedback dimensions
- Typical approach is to substitute



Highlighting object about to be selected





Spring Manipulation Tools, Michal Koutek, TU Delft

#### Designing for Humans – Passive Haptics

- Match shape and appearance of virtual object with physical prop
  - User both sees and feels
- Advantage
  - Inexpensive haptic/tactile feedback
- Disadvantage
  - Scalability: all users need physical prop



## Designing for Humans – Constraints

#### • Constraints:

- Are a relation between variables that must be satisfied
  - Example: a line should stay horizontal
- Define geometrical coherence of scene
- Can make interaction simpler and improve accuracy

### Designing for Humans – Constraint Types

• Physically realistic constraints

- Collision detection and avoidance
- Gravity
- DOF reduction
  - Simplify interaction (example: constrain travel to ground)
- Dynamic alignment tools
  - Grids and snapping, guiding surfaces
- Intelligent constraints
  - Example: lamp can only stand on horizontal surfaces

#### Designing for Humans – Two Handed Control

- A.k.a. bimanual input
- Transfer everyday manipulation experiences to 3D UI
- Can increase user performance on certain tasks

### Designing for Humans – Guiard's Framework

• Tasks are

- Unimanual: throwing darts
- Bimanual symmetric
  - Synchronous: pulling a rope
  - Asynchronous: typing on keyboard
- Bimanual asymmetric (cooperative): holding a cell phone with one hand, operating it with the other
- Division of labor (hand roles) for asymmetric scenario:
  - Nondominant hand dynamically adjusts spatial frame of reference for dominant hand
  - Dominant hand produces precision movements, nondominant hand performs gross manipulation

## Designing for Different User Groups

- Age
- Prior 3D UI experience
- Physical characteristics: arm length, etc.
- Perceptual, cognitive, motor capabilities
  - Color recognition
  - Stereo vision
  - Spatial abilities

# Designing for User Comfort

- Weight of equipment
- Keep users in proper physical space
- Hygiene and public installations
- Keep sessions short (30-45min max) to prevent sickness, fatigue