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Announcements
 Homework 6 due Friday at 1pm
 Next Monday: Midterm review
 Midterm #2 on Thu May 20th
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Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves
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Linear Interpolation
 Three equivalent ways to write it

 Expose different properties

1. Regroup for points p

2. Regroup for t

3. Matrix form
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Weighted Average

 Weights are a function of t
 Sum is always 1, for any value of t
 Also known as blending functions

x(t)  (1 t)p0     (t)p1

 B0 (t) p0  B1(t)p1, where B0 (t)  1 t  and B1(t)  t

5



 Curve is based at point p0

 Add the vector, scaled by t

.

x(t)  (p1  p0 )
vector
 

 t     p0    
point


p0.

Linear Polynomial

p1-p0

.5(p1-p0)

.
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 Geometry matrix

 Geometric basis

 Polynomial basis

 In components

Matrix Form
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 Geometry matrix

 Geometric basis

 Polynomial basis

 In components

Matrix Form
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Tangent
 For a straight line, the tangent is constant

 Weighted average

 Polynomial

 Matrix form
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Lecture Overview
 Polynomial Curves
 Introduction
 Polynomial functions

 Bézier Curves
 Introduction
 Drawing Bézier curves
 Piecewise Bézier curves
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Bézier Curves
 Are a higher order extension of linear interpolation

p0

p1

p0

p1
p2

p0

p1

p2

p3

Linear Quadratic Cubic
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Bézier Curves
 Give intuitive control over curve with control points
 Endpoints are interpolated, intermediate points are 

approximated
 Convex Hull property

 Many demo applets online, for example:
 Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.html
 http://www.theparticle.com/applets/nyu/BezierApplet/
 http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/B

ezier/bezier.html
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Cubic Bézier Curve
 Most commonly used case
 Defined by four control points:

 Two interpolated endpoints (points are on the curve)
 Two points control the tangents at the endpoints

 Points x on curve defined as function of parameter t
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p0

p1

p2

p3

x(t)
•



Algorithmic Construction
 Algorithmic construction

 De Casteljau algorithm, developed at Citroen in 1959, 
named after its inventor Paul de Casteljau (pronounced 
“Cast-all-’Joe”)

 Developed independently from Bézier’s work:
Bézier created the formulation using blending functions, 
Casteljau devised the recursive interpolation algorithm
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De Casteljau Algorithm
 A recursive series of linear interpolations
 Works for any order Bezier function, not only cubic

 Not very efficient to evaluate
 Other forms more commonly used

 But:
 Gives intuition about the geometry
 Useful for subdivision

15



De Casteljau Algorithm

p0

p1

p2

p3

 Given:
 Four control points
 A value of t (here t≈0.25)
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De Casteljau Algorithm

p0

q0

p1

p2

p3

q2

q1

q0 (t)  Lerp t,p0 ,p1 
q1(t)  Lerp t,p1,p2 
q2 (t)  Lerp t,p2 ,p3 
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De Casteljau Algorithm

q0

q2

q1

r1

r0

r0 (t)  Lerp t,q0 (t),q1(t) 
r1(t)  Lerp t,q1(t),q2 (t) 
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De Casteljau Algorithm

r1x

r0 •

x(t)  Lerp t,r0 (t),r1(t) 
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x
•

p0

p1

p2

p3

De Casteljau Algorithm

Applets
 Demo: http://www2.mat.dtu.dk/people/J.Gravesen/cagd/decast.html
 http://www.caffeineowl.com/graphics/2d/vectorial/bezierintro.html
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x  Lerp t,r0 ,r1 
r0  Lerp t,q0 ,q1 
r1  Lerp t,q1,q2 

q0  Lerp t,p0 ,p1 
q1  Lerp t,p1,p2 
q2  Lerp t,p2 ,p3 

p0

p1

p2

p3
        p1

q0

r0 p2

x q1

r1 p3

q2

p4

Recursive Linear Interpolation
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Expand the LERPs
q0 (t)  Lerp t,p0 ,p1  1 t p0  tp1

q1(t)  Lerp t,p1,p2  1 t p1  tp2

q2 (t)  Lerp t,p2 ,p3  1 t p2  tp3

r0 (t)  Lerp t,q0 (t),q1(t)  1 t  1 t p0  tp1  t 1 t p1  tp2 
r1(t)  Lerp t,q1(t),q2 (t)  1 t  1 t p1  tp2  t 1 t p2  tp3 

x(t)  Lerp t,r0 (t),r1(t) 
 1 t  1 t  1 t p0  tp1  t 1 t p1  tp2  
       t 1 t  1 t p1  tp2  t 1 t p2  tp3  
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x(t)  1 t  1 t  1 t p0  tp1  t 1 t p1  tp2  
t 1 t  1 t p1  tp2  t 1 t p2  tp3  

x(t)  1 t 3 p0  3 1 t 2 tp1  3 1 t t 2p2  t 3p3

x(t)  t 3  3t 2  3t 1 
B0 (t )  

p0  3t 3  6t 2  3t 
B1 (t )  

p1

 3t 3  3t 2 
B2 (t )

  
p2  t 3 

B3 (t )


p3

Weighted Average of Control Points
 Regroup for p:
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 Weights Bi(t) add up to 1 for any value of t

                    x(t)  B0 t p0  B1 t p1  B2 t p2  B3 t p3

The cubic Bernstein polynomials :
                    B0 t  t 3  3t 2  3t 1

                    B1 t  3t 3  6t 2  3t

                    B2 t  3t 3  3t 2

                    B3 t  t 3                        

                Bi (t)  1

Cubic Bernstein Polynomials
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General Bernstein Polynomials
B0

1 t  t 1      B0
2 t  t 2  2t 1     B0

3 t  t 3  3t 2  3t 1
B1

1 t  t B1
2 t  2t 2  2t B1

3 t  3t 3  6t 2  3t
B2

2 t  t 2 B2
3 t  3t 3  3t 2

B3
3 t  t 3

Bi
n t 

n
i






1 t n i t i
n
i







n!
i! n  i !

Bi
n t   1 n! = factorial of n

(n+1)! = n! x (n+1)
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General Bézier Curves
 nth-order Bernstein polynomials form nth-order 

Bézier curves

Bi
n t 

n
i






1 t n i t i

x t  Bi
n t pi

i0

n
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Bézier Curve Properties
Overview:
 Convex Hull property
 Affine Invariance
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Definitions
 Convex hull of a set of points:
 Polyhedral volume created such that all lines connecting any 

two points lie completely inside it (or on its boundary)

 Convex combination of a set of points:
 Weighted average of the points, where all weights between 0 

and 1, sum up to 1

 Any convex combination of a set of points lies within the 
convex hull
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p0

p1

p2

p3

Convex Hull Property
 A Bézier curve is a convex combination of the control points 

(by definition, see Bernstein polynomials)
 A Bézier curve is always inside the convex hull

 Makes curve predictable
 Allows culling, intersection testing, adaptive tessellation

 Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.html
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