CSE190 3DUI - Winter 2013

CSE 190: 3D User Interaction

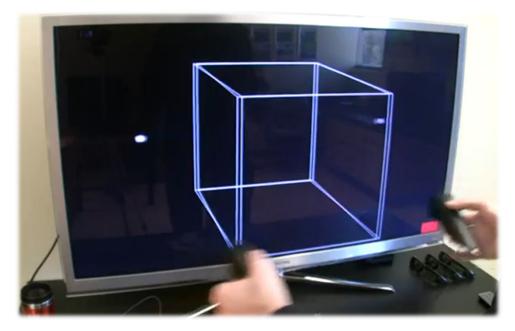
Lecture #7: Selection Jürgen P. Schulze, Ph.D.

1

Announcements

- Homework assignment #2 due Friday, February 8th at 1pm in Sequoia lab 142
 - This time grading starts at 12 noon
- Reminder: recommended reading

Augmented Reality Demo


 Web app: http://www.nature.com/naturejobs/science/p rofiles/kaust-ar

Razer Hydra

- Developed by Sixense Entertainment
- Released June 16, 2011
- Tracks absolute position and orientation (6 DOF)
 - Precision: 1mm and 1 degree
- Uses a weak electro-magnetic field
- Two wired input devices

Razer Hydra Video

- Razer Hydra for low-cost 3D displays
 - By Oliver Kreylos, UCD
 - http://www.youtube.com/watch?v=H5bSz
 VByLjM

Leap Motion

- Short range finger tracking
 - To date no access to depth map
- Inexpensive (\$70 on pre-order)
- Not yet available (promised for early 2014)
- SDK available today
- Developer units being shipped
- More and more demo videos available

CSE190 3DUI - Winter 2013

Leap Video

• https://www.leapmotion.com/

Why Selection and Manipulation?

- Major method of interaction with physical environments
- Major method of interaction with virtual environments
- Affects the quality of entire 3D interface
- Design of 3D manipulation techniques is difficult

Selection & Manipulation

- Selection: specifying one or more objects from a set
- Manipulation: modifying object properties (<u>position</u>, <u>orientation</u>, scale, shape, color, texture, behavior, etc.)

Goals of Selection

- Indicate action on object
- Query object
- Make object active
- Travel to object location
- Set up manipulation

Selection Performance

- Variables affecting user performance
 - Object distance from user
 - Object size
 - Density of objects in area
 - Presence of occluding objects

Canonical Parameters

• Selection

• distance and direction to target

- target size
- o density of objects around the target
- number of targets to be selected
- target occlusion
- Positioning
 - distance/direction to initial position
 - distance/direction to target position
 - translation distance
 - required precision of positioning
- Rotation
 - distance to target
 - initial orientation
 - final orientation
 - amount of rotation

Input Device Parameters

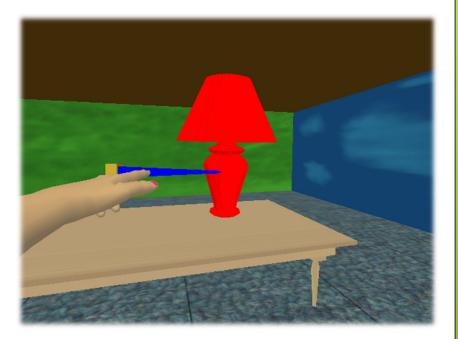
- Number of control dimensions
- Control integration: how many DOF are controlled simultaneously
- Force vs. position control
- Form factor: impact on accuracy

Sensor attached to hand

Sensor rolled with fingers

Technique Classification by Metaphor

- Manipulation techniques
 - Egocentric metaphor
 - Virtual pointer metaphor
 - Ray-casting
 - Two-handed pointing
 - Flashlight
 - Image plane
 - Direct manipulation
 - "Classical" virtual hand
 - Go-Go
 - Hybrid techniques
 - HOMER
 - Exocentric metaphor
 - World-in-miniature
 - Scaled-world grab
 - Hybrid techniques
 - Voodoo Dolls


Isomorphic vs. Non-Isomorphic View

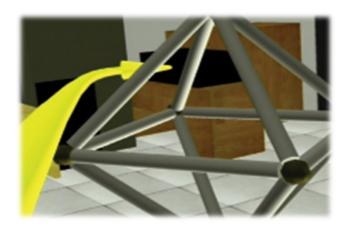
Isomorphic

- Geometrical on-to-one correspondence between hand motions in physical and virtual worlds
- Natural interactions
- Non-Isomorphic
 - "Magic" virtual tools (laser beams, rubber arms, etc.)

Ray-Casting

- User points at objects with virtual ray
- Ray defines and visualizes pointing direction
- First intersected object is selected

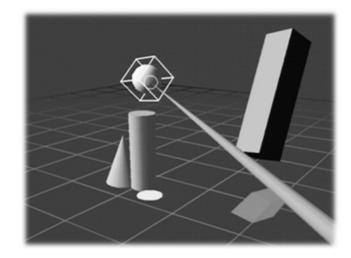
 $\mathbf{p}(\alpha) = \mathbf{h} + \alpha \cdot \vec{\mathbf{p}}$


where $0 < \alpha < \infty$, determined by first object intersection

h = 3D position of virtual hand

 $\vec{\mathbf{p}} =$ ray attached to \mathbf{h}

Two-Handed Pointing


- Ray casting with 2 hands
- More control
 - Distance between hands controls length
 - Allows pointing at things behind other things

 $\mathbf{p}(\alpha) = \mathbf{h}_{1} + \alpha \cdot (\mathbf{h}_{r} - \mathbf{h}_{1})$ where $0 < \alpha < \infty$, fixed parameter $\mathbf{h}_{1} = 3D$ position of left hand $\mathbf{h}_{r} = 3D$ position of right hand

Flashlight

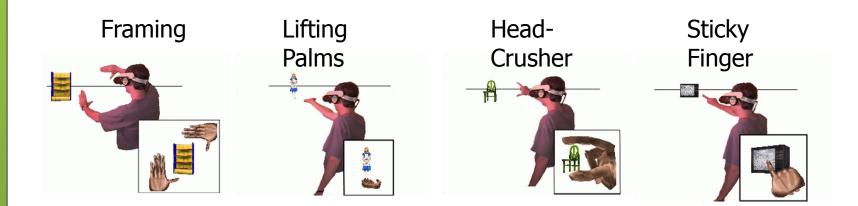
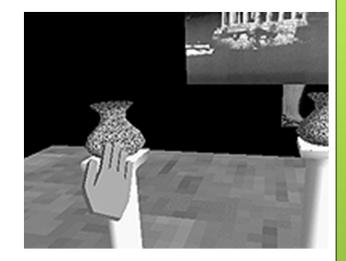
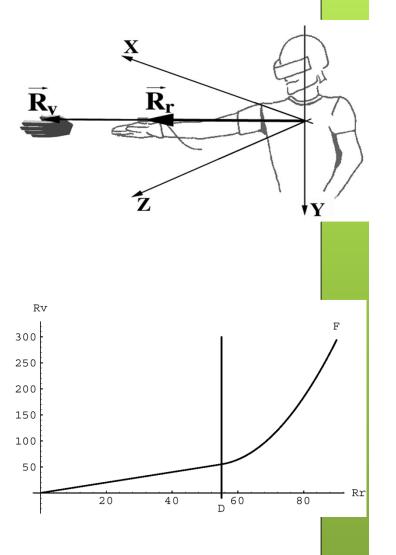

- Soft selection technique
 - Does not need precision
 - Conic selection volume
 - Tip of cone in wand
 - Cone direction determined by wand direction
 - Fixed cone size
 - If multiple objects in cone
 - Object closer to center line of cone is selected
 - If multiple objects are equally close to center line: select object closer to device

Image Plane Techniques


Require only 2 DOF
Selection based on 2D projections
Use virtual image plane in front of user
Dependent on head/eye position

Virtual Hand

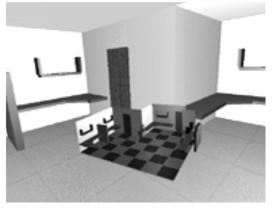
- Select and manipulate directly with hand
- Hand represented as 3D cursor


- Intersection between cursor and object indicates selection $\mathbf{p}_{x} = \alpha \cdot \mathbf{p}_{r}, \mathbf{R}_{y} = \mathbf{R}_{r}$
 - $\mathbf{p}_r, \mathbf{R}_r$ = position and orientation of real hand
 - $\mathbf{p}_{v}, \mathbf{R}_{v}$ = position and orientation of hand in VE
 - α = fixed scaling factor

CSE190 3DUI - Winter 2013

Go-Go

- By Poupyrev, 1996
- Arm-extension technique
- Touch objects to select, like simple virtual hand
- Non-linear mapping between physical and virtual hand position
- Requires torso position
- Local and distant regions

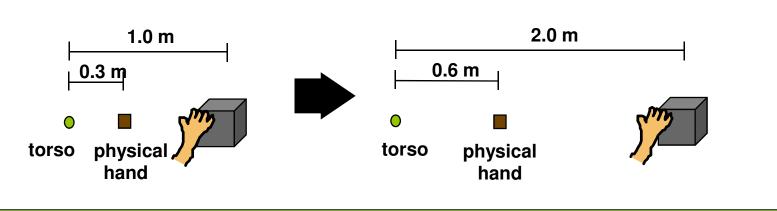

$$r_{v} = F(r_{r}) = \begin{cases} r_{r} & \text{if } r_{r} \leq D \\ r_{r} + \alpha (r_{r} - D)^{2} & \text{otherwise} \end{cases}$$

where $r_{r} = \text{length of } \vec{\mathbf{R}}_{r}$
 $r_{v} = \text{length of } \vec{\mathbf{R}}_{v}$
 D, α are constants

World-in-Miniature (WIM)

• By Stoakley, 1995

- "Dollhouse" world held in user's hand
- Miniature objects can be manipulated directly
- Moving miniature objects affects full-scale objects
- Can also be used for navigation

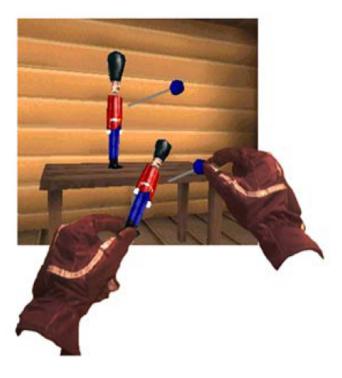


HOMER

Hand-Centered Object Manipulation Extending Ray-Casting • By Bowman/Hodges, 1997

• Select: ray-casting

• Manipulate: hand-centered



Time

Scaled-World Grab • By Mine et al., 1997 • Often used with occlusion • At selection, scale world down so that virtual hand touches selected object • User initially does not notice a change in the image

Voodoo Dolls

- Pierce et al. 1999
- Two-handed technique
- Builds upon image plane and WIM techniques
- Developed for pinch gloves
- Creates copies of objects (dolls) for manipulation
- Non-dominant hand: stationary frame of reference
- Dominant hand: defines position and orientation

