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Announcements

 Tomorrow: grading project 4
 Monday: midterm discussion
 Next Thursday: midterm #2
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Overview

 Bi-linear patch
 Bi-cubic Bézier patch
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Curved Surfaces

Curves

 Described by a 1D series of control points

 A function x(t)

 Segments joined together to form a longer curve

Surfaces

 Described by a 2D mesh of control points

 Parameters have two dimensions (two dimensional parameter 
domain)

 A function x(u,v)

 Patches joined together to form a bigger surface
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 x(u,v) describes a point in space for any given (u,v) pair
 u,v each range from 0 to 1
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 x(u,v) describes a point in space for any given (u,v) pair
 u,v each range from 0 to 1

 Parametric curves
 For fixed u0 , have a v curve x(u0,v)
 For fixed v0 , have a u curve x(u,v0)
 For any point on the surface, there are a pair of parametric 

curves through that point
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Tangents

 The tangent to a parametric curve is also tangent to the 
surface

 For any point on the surface, there are a pair of (parametric) 
tangent vectors

 Note: these vectors are not necessarily perpendicular to each 
other
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Surface Normal
 Normal is cross product of 

the two tangent vectors
 Order of vectors matters!
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Bilinear Patch
 Control mesh with four points p0, p1, p2, p3

 Compute  x(u,v) using a two-step construction scheme
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Bilinear Patch (Step 1)
 For a given value of u, evaluate the linear curves on the two u-

direction edges

 Use the same value u for both:

q0=Lerp(u,p0,p1) q1=Lerp(u,p2,p3)
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Bilinear Patch (Step 2)
 Consider that q0, q1 define a line segment

 Evaluate it using v to get x
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x  Lerp(v,q0 ,q1)
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Bilinear Patch
 Combining the steps, we get the full formula 
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x(u,v)  Lerp(v,Lerp(u,p0 ,p1),Lerp(u,p2 ,p3))
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Bilinear Patch
 Try the other order

 Evaluate first in the v direction

r0  Lerp(v,p0 ,p2 )     r1  Lerp(v,p1,p3)
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Bilinear Patch
 Consider that r0, r1 define a line segment

 Evaluate it using u to get x

x  Lerp(u,r0 ,r1)
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Bilinear Patch
 The full formula for the v direction first:

x(u,v)  Lerp(u,Lerp(v,p0 ,p2 ),Lerp(v,p1,p3))
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Bilinear Patch
 Patch geometry is independent of the order of u and v

x(u,v)  Lerp(v,Lerp(u,p0 ,p1),Lerp(u,p2 ,p3))

x(u,v)  Lerp(u,Lerp(v,p0 ,p2 ),Lerp(v,p1,p3))
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Bilinear Patch

 Visualization
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Bilinear Patches

 Weighted sum of control points

 Bilinear polynomial

 Matrix form
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Properties
 Patch interpolates the control points
 The boundaries are straight line segments
 If all 4 points of the control mesh are co-planar, the patch is flat
 If the points are not co-planar, we get a curved surface

 saddle shape (hyperbolic paraboloid)

 The parametric curves are all straight line segments!
 a (doubly) ruled surface: has (two) straight lines through every point

 Not terribly useful as a modeling primitive
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Overview

 Bi-linear patch
 Bi-cubic Bézier patch
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Bicubic Bézier patch
 Grid of 4x4 control points, p0 through p15

 Four rows of control points define Bézier curves along u
p0,p1,p2,p3; p4,p5,p6,p7; p8,p9,p10,p11; p12,p13,p14,p15

 Four columns define Bézier curves along v
p0,p4,p8,p12; p1,p6,p9,p13; p2,p6,p10,p14; p3,p7,p11,p15
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Bézier Patch (Step 1)
 Evaluate four u-direction Bézier curves at scalar value u [0..1]

 Get points q0 … q3
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q0  Bez(u,p0 ,p1,p2 ,p3)

q1  Bez(u,p4 ,p5 ,p6 ,p7 )

q2  Bez(u,p8 ,p9 ,p10 ,p11)

q3  Bez(u,p12 ,p13,p14 ,p15 )
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Bézier Patch (Step 2)
 Points q0 … q3 define a Bézier curve

 Evaluate it at v [0..1]
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Bézier Patch
 Same result in either order (evaluate u before v or vice versa)

q0  Bez(u,p0 ,p1,p2 ,p3)

q1  Bez(u,p4 ,p5 ,p6 ,p7 )

q2  Bez(u,p8 ,p9 ,p10 ,p11)

q3  Bez(u,p12 ,p13,p14 ,p15 )

x(u,v)  Bez(v,q0 ,q1,q2 ,q3)

  

r0  Bez(v,p0 ,p4 ,p8 ,p12 )

r1  Bez(v,p1,p5 ,p9 ,p13)

r2  Bez(v,p2 ,p6 ,p10 ,p14 )

r3  Bez(v,p3,p7 ,p11,p15 )

x(u,v)  Bez(u,r0 ,r1,r2 ,r3)
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Bézier Patch: Matrix Form 

C stores the coefficients of the bicubic equation
G stores the control point geometry
BBez is the basis matrix (Bézier basis)
U and V are the vectors formed from the powers 
of u and v



Properties
 Convex hull: any point on the surface will fall within the convex hull of the 

control points

 Interpolates 4 corner points

 Approximates other 12 points, which act as “handles”

 The boundaries of the patch are the Bézier curves defined by the points on 
the mesh edges

 The parametric curves are all Bézier curves
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Tangents of a Bézier patch
 Remember parametric curves x(u,v0), x(u0,v) where v0, u0 is 

fixed

 Tangents to surface = tangents to parametric curves

 Tangents are partial derivatives of x(u,v)

 Normal is cross product of the tangents
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Tangents of a Bézier patch
q0  Bez(u,p0 ,p1,p2 ,p3)

q1  Bez(u,p4 ,p5 ,p6 ,p7 )
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 Uniform tessellation is most straightforward 
 Evaluate points on a grid of u, v coordinates

 Compute tangents at each point, take cross product to get per-vertex 
normal

 Draw triangle strips with primitive type GL_TRIANGLE_STRIP

 Adaptive tessellation/recursive subdivision
 Potential for “cracks” if patches on opposite sides of an edge divide 

differently

 Tricky to get right, not usually worth the effort

Tessellating a Bézier patch
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OpenGL Support

 OpenGL supports NURBS patches through GLU 
functions

 Structure:
gluBeginSurface(nurbs);

gluNurbsSurface(GLUnurbs* nurbs, 
GLint sKnotCount, GLfloat* sKnots, 
GLint tKnotCount, GLfloat* tKnots,  
GLint sStride, GLint tStride, 
GLfloat* control, 
GLint sOrder, GLint tOrder, 
GLenum type); 

gluEndSurface(nurbs);
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Piecewise Bézier Surface
 Lay out grid of adjacent meshes of control points
 For C0 continuity, must share points on the edge

 Each edge of a Bézier patch is a Bézier curve based only on 
the edge mesh points

 So if adjacent meshes share edge points, the patches will line 
up exactly

 But we have a crease…

Grid of control points Piecewise Bézier surface
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C1 Continuity

 We want the parametric curves that cross each edge to 
have C1 continuity
 So the handles must be equal-and-opposite across the edge:
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Modeling With Bézier Patches
 Original Utah teapot, from Martin 

Newell's PhD thesis, consisted of 28 
Bézier patches.

 The original had no rim for the lid and 
no bottom

 Later, four more patches were added to 
create a bottom, bringing the total to 
32

 The data set was used by a number of
people, including graphics guru Jim 
Blinn. In a demonstration of a system of 
his he scaled the teapot by .75, creating 
a stubbier teapot. He found it more 
pleasing to the eye, and it was this 
scaled version that became the highly 
popular dataset used today. 

33 Source: http://www.holmes3d.net/graphics/teapot/

Pixar’s walking teapot



Comparing polygon to NURBS model
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Source: https://www.aliasworkbench.com


