
CSE 167:
Introduction to Computer Graphics
Lecture #7: Projection and Frustum Culling

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2019

Projection

Projection
 Goal:

Given 3D points (vertices) in camera coordinates,
determine corresponding image coordinates

 Transforming 3D points into 2D is called Projection
 Typically one of two types of projection is used:
 Orthographic Projection (=Parallel Projection)

 Perspective Projection: most commonly used
3

http://learnwebgl.brown37.net/08_projections/projections_perspective.html

Perspective Projection
 Most common for computer graphics
 Simplified model of human eye, or camera lens (pinhole camera)

 Things farther away appear to be smaller
 Discovery attributed to Filippo Brunelleschi (Italian architect) in

the early 1400’s

4

Perspective Projection
 Project along rays that converge in center of projection

2D image plane

Center of
projection

3D scene

5

Perspective Projection
Parallel lines are
no longer parallel,
converge in one point

Earliest example:
La Trinitá (1427) by Masaccio6

Perspective Projection
From law of ratios in similar triangles follows:

 We can express this using homogeneous coordinates and
4x4 matrices as follows

7



Similarly:

By definition:
Image plane

(x’, y’, -d)

d

𝑦𝑦′
𝑑𝑑

=
𝑦𝑦
𝐷𝐷 𝑦𝑦𝑦 =

𝑦𝑦𝑦𝑦
𝐷𝐷

𝑥𝑥𝑥 =
𝑥𝑥𝑥𝑥
𝐷𝐷

(x, y, -D)y

-z
D

𝑧𝑧𝑧 = −𝑑𝑑

Homogeneous divisionProjection matrix
- -

-
-
-

Perspective Projection

8

Image plane

(x’, y’, -d)

d

y

-z
D

(x, y, -D)𝑥𝑥𝑥 =
𝑥𝑥𝑥𝑥
𝐷𝐷

𝑦𝑦𝑦 =
𝑦𝑦𝑦𝑦
𝐷𝐷

𝑧𝑧𝑧 = −𝑑𝑑

Perspective Projection

 Using projection matrix, homogeneous division seems more complicated
than just multiplying all coordinates by - d/z, so why do it?

 It will allow us to:
 Handle different types of projections in a unified way
 Define arbitrary view volumes

Projection matrix P

9

- -

-
-
-

Topics
 View Volumes
 Vertex Transformation
 Rendering Pipeline
 Culling

10

View Volume
 View volume = 3D volume seen by camera

World coordinates

Camera coordinates

11

Projection
matrix

Projection Matrix

Camera coordinates

Canonical view volume

12

Image space
(pixel coordinates)

Viewport
transformation

Perspective View Volume
General view volume

 Defined by 6 parameters, in camera coordinates
 Left, right, top, bottom boundaries
 Near, far clipping planes

 Clipping planes to avoid numerical problems
 Divide by zero (multiplying all coordinates by - d/z)
 Low precision for distant objects

 Usually symmetric, i.e., left=-right, top=-bottom

Camera
coordinates

13

Perspective View Volume

Symmetrical view volume

 Only 4 parameters
 Vertical field of view (FOV)
 Image aspect ratio (width/height)
 Near, far clipping planes

 Demo link

-z
FOV

y

z=-near

z=-far

y=top

14

𝜃𝜃

aspect ratio= right − left
top − bottom

=
right
top

tan(FOV / 2) = top
near

𝜃𝜃

http://learnwebgl.brown37.net/08_projections/projections_perspective.html

Perspective View Volume
Rule of thumb to calculate projection matrix:
1. Convert the view-frustum to the simple symmetric projection frustum
2. Transform the simple frustum to the canonical view frustum

15 Ref: http://info.ee.surrey.ac.uk/Teaching/Courses/eem.cgi/lectures_pdf/lecture3.pdf

http://info.ee.surrey.ac.uk/Teaching/Courses/eem.cgi/lectures_pdf/lecture3.pdf

Perspective Projection Matrix
 General view frustum with 6 parameters

Camera
coordinates

16

Perspective Projection Matrix
 Symmetrical view frustum with field of view, aspect

ratio, near and far clip planes

Ppersp (FOV ,aspect,near, far) =

1
aspect ⋅ tan(FOV / 2)

0 0 0

0 1
tan(FOV / 2)

0 0

0 0 near + far
near − far

2 ⋅near ⋅ far
near − far

0 0 −1 0





























-z
FOV

y

z=-near

z=-far

y=top

Camera
coordinates

17 Ref: https://www.youtube.com/watch?v=ohksz3A00fk&t=79s

https://www.youtube.com/watch?v=ohksz3A00fk&t=79s

Projection Matrix
 How to determine if a matrix is projection matrix?

18

Canonical View Volume
 Goal: create projection matrix so that
 User defined view volume is transformed into canonical

view volume: cube [-1,1]x[-1,1]x[-1,1]
 Multiplying corner vertices of view volume by projection

matrix and performing homogeneous divide yields corners
of canonical view volume

 Perspective and orthographic projection are treated
the same way

 Canonical view volume is last stage in which
coordinates are in 3D
 Next step is projection to 2D frame buffer

19

Canonical View Volume
 Summary so far in a demo

20

https://jsantell.com/model-view-projection

Viewport Transformation
 After applying projection matrix, scene points are in normalized

viewing coordinates
 Per definition within range [-1..1] x [-1..1] x [-1..1]

 Next is projection from 3D to 2D (not reversible)
 Normalized viewing coordinates can be mapped to image

(=pixel=frame buffer) coordinates
 Range depends on window (view port) size:

[x0…x1] x [y0…y1]

 Scale and translation required:

D x0 , x1, y0 , y1()=

x1 − x0() 2 0 0 x0 + x1() 2
0 y1 − y0() 2 0 y0 + y1() 2
0 0 1 2 1 2
0 0 0 1



















21

Lecture Overview
 View Volumes
 Vertex Transformation
 Rendering Pipeline
 Culling

22

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

Object space

23

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

24

Object space
World space

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

25

Object space
World space

Camera space

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

26

Object space
World space

Camera space
Canonical view volume

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

27

Object space
World space

Camera space

Image space
Canonical view volume

Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

28

Pixel coordinates:

Complete Vertex Transformation in OpenGL
 Mapping a 3D point in object coordinates to pixel

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

29

Projection matrix

ModelView matrix

Complete Vertex Transformation in OpenGL
 ModelView matrix: C-1M
 Defined by the programmer.
 Think of the ModelView matrix as where you stand with the

camera and the direction you point it.
 Projection matrix: P
 Think of the projection matrix as describing the attributes

of your camera, such as field of view, focal length, etc.
 Viewport, D
 Specify via glViewport(x, y, width, height)

30

Vertex Shader Code
layout (location = 0) in vec3 position;

// ...

uniform mat4 projection;

uniform mat4 view;

uniform mat4 model;

void main() {

gl_Position = projection * view *
model * vec4(position, 1.0);

// ...

}31

The Complete Vertex Transformation

32

Model
Matrix

Camera
Matrix

Projection
Matrix

Viewport
Matrix

Object
Coordinates

World
Coordinates

Camera
Coordinates

Canonical
View Volume
Coordinates

Window
Coordinates

glm::lookAt

e.g. glm::perspective

glViewport

model

Visibility Culling

Visibility Culling
 Goal:

Discard geometry that does not need to be drawn to
speed up rendering

 Types of culling:
 View frustum culling
 Small object culling
 Degenerate culling
 Backface culling
 Occlusion culling

34

View Frustum Culling
 Triangles outside of view frustum are off-screen

35

Images: SGI OpenGL Optimizer Programmer's Guide

Videos
 Rendering Optimizations - Frustum Culling
 http://www.youtube.com/watch?v=kvVHp9wMAO8

 View Frustum Culling Demo
 http://www.youtube.com/watch?v=bJrYTBGpwic

 View Frustum Culling in Action
 http://giant.gfycat.com/InexperiencedMadKiskadee.webm

36

http://www.youtube.com/watch?v=kvVHp9wMAO8
http://www.youtube.com/watch?v=bJrYTBGpwic
http://giant.gfycat.com/InexperiencedMadKiskadee.webm

Bounding Volumes
 Simple shape that

completely
encloses an object

 Generally a box or
sphere
 Easier to calculate culling for

spheres
 Easier to calculate tight fits

for boxes
 Intersect bounding

volume with view frustum
instead of each primitive

37

Bounding Box
 How to cull objects consisting of may polygons?
 Cull bounding box
 Rectangular box, parallel to object space coordinate planes
 Box is smallest box containing the entire object

38

Image: SGI OpenGL Optimizer Programmer's Guide

View Frustum Culling
 Frustum defined by 6 planes
 Each plane divides space into

“outside”, “inside”
 Check each object against

each plane
 Outside, inside, intersecting

 If “outside” of at least one plane
 Outside the frustum

 If “inside” all planes
 Inside the frustum

 Else partly inside and partly out
View frustum

39

•p

• x

Distance to Plane
 A plane is described by a point p on the plane and a unit

normal n
 Find the (perpendicular) distance from point x to the

plane


n

40

•p

• x

Distance to Plane
 The distance is the length of the projection of x-p

onto n

dist = x − p()
 

⋅
n


n x−p

 

41

 The distance has a sign
 positive on the side of the plane the normal points to
 negative on the opposite side
 zero exactly on the plane

 Divides 3D space into two infinite half-spaces

•p

Distance to Plane

dist(x) = x − p()
 

⋅
n 

n Positive

Negative
42

Distance to Plane
 Simplification

 d is independent of x
 d is distance from the origin to the plane
 We can represent a plane with just d and n

43

Frustum With Signed Planes

 Normal of each plane points outside
 “outside” means positive distance
 “inside” means negative distance

44

 For sphere with radius r and origin x, test the distance to
the origin, and see if it is beyond the radius

 Three cases:
 dist(x)>r

 completely above

 dist(x)<-r
 completely below

 -r<dist(x)<r
 intersects

Test Sphere and Plane

•


n Positive

Negative

45

Culling Summary
 Transform view frustum plane equations in camera space.
 Pre-compute the normal n and value d for each of the six

planes.
 Given a sphere with center x and radius r in camera space.
 For each plane:

 if dist(x) > r: sphere is outside! (no need to continue loop)
 add 1 to count if dist(x)<-r

 If we made it through the loop, check the count:
 if the count is 6, the sphere is completely inside
 otherwise the sphere intersects the frustum
 (can use a flag instead of a count)

46

 Want to be able to cull the whole group quickly
 But if the group is partly in and partly out, want to be

able to cull individual objects

Culling Groups of Objects

47

Hierarchical Bounding Volumes
 Given hierarchy of objects
 Bounding volume of each node encloses the bounding

volumes of all its children
 Start by testing the outermost bounding volume
 If it is entirely outside, don’t draw the group at all
 If it is entirely inside, draw the whole group

48

 If the bounding volume is partly inside and partly
outside
 Test each child’s bounding volume individually
 If the child is in, draw it; if it’s out cull it; if it’s partly in and

partly out, recurse.
 If recursion reaches a leaf node, draw it normally

Hierarchical Culling

49

Video
 Math for Game Developers - Frustum Culling
 http://www.youtube.com/watch?v=4p-E_31XOPM

50

Find the frustum planes
 p – the camera position

 d – a vector with the direction of the camera’s view ray. In here it is
assumed that this vector has been normalized

 Wnear – the “width” of the near plane

 nearDist – the distance from the camera to the near plane

 farDist – the distance from the camera to the far plane

 up – the up vector obtained by normalizing (ux, uy, uz) from the last
parameters of gluLookAt

 right – the right vector obtained by cross product between up and d.

51

nc = p + d * nearDist
fc = p + d * farDist

Find the frustum planes

52

 near plane: d as normal, nc as a point on the plane.
 far plane: –d as normal, fc as a point on the plane.
 right plane: p as a point on the plane. normal can be found

in this tutorial, the pseudocode is copied here.

nc = p + d * nearDist
a = (nc + right * Wnear / 2) – p
a.normalize()
normalRight = up × a

nc
right

a

up

http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-extracting-the-planes/

	CSE 167:�Introduction to Computer Graphics�Lecture #7: Projection and Frustum Culling
	Projection
	Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Topics
	View Volume
	Projection Matrix
	Perspective View Volume
	Perspective View Volume
	Perspective View Volume
	Perspective Projection Matrix
	Perspective Projection Matrix
	Projection Matrix
	Canonical View Volume
	Canonical View Volume
	Viewport Transformation
	Lecture Overview
	Complete Vertex Transformation
	Complete Vertex Transformation
	Complete Vertex Transformation
	Complete Vertex Transformation
	Complete Vertex Transformation
	Complete Vertex Transformation
	Complete Vertex Transformation in OpenGL
	Complete Vertex Transformation in OpenGL
	Vertex Shader Code
	The Complete Vertex Transformation
	Visibility Culling
	Visibility Culling
	View Frustum Culling
	Videos
	Bounding Volumes
	Bounding Box
	View Frustum Culling
	Distance to Plane
	Distance to Plane
	Distance to Plane
	Distance to Plane
	Frustum With Signed Planes
	Test Sphere and Plane
	Culling Summary
	Culling Groups of Objects
	Hierarchical Bounding Volumes
	Hierarchical Culling
	Video
	Find the frustum planes
	Find the frustum planes

