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Projection



Projection
 Goal:

Given 3D points (vertices) in camera coordinates, 
determine corresponding image coordinates

 Transforming 3D points into 2D is called Projection
 Typically one of two types of projection is used:
 Orthographic Projection (=Parallel Projection)

 Perspective Projection: most commonly used
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http://learnwebgl.brown37.net/08_projections/projections_perspective.html


Perspective Projection
 Most common for computer graphics
 Simplified model of human eye, or camera lens (pinhole camera)

 Things farther away appear to be smaller
 Discovery attributed to Filippo Brunelleschi (Italian architect) in 

the early 1400’s
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Perspective Projection
 Project along rays that converge in center of projection

2D image plane

Center of
projection

3D scene
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Perspective Projection
Parallel lines are
no longer parallel,
converge in one point

Earliest example:
La Trinitá (1427) by Masaccio6



Perspective Projection
From law of ratios in similar triangles follows:

 We can express this using homogeneous coordinates and 
4x4 matrices as follows
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Similarly:
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Homogeneous divisionProjection matrix
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-
-
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Perspective Projection
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Image plane
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Perspective Projection

 Using projection matrix, homogeneous division seems more complicated 
than just multiplying all coordinates by - d/z, so why do it?

 It will allow us to:
 Handle different types of projections in a unified way
 Define arbitrary view volumes

Projection matrix P
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Topics
 View Volumes
 Vertex Transformation
 Rendering Pipeline
 Culling
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View Volume
 View volume = 3D volume seen by camera

World coordinates

Camera coordinates
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Projection 
matrix

Projection Matrix

Camera coordinates

Canonical view volume
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Image space
(pixel coordinates)

Viewport 
transformation



Perspective View Volume
General view volume

 Defined by 6 parameters, in camera coordinates 
 Left, right, top, bottom boundaries
 Near, far clipping planes

 Clipping planes to avoid numerical problems
 Divide by zero (multiplying all coordinates by - d/z)
 Low precision for distant objects

 Usually symmetric, i.e., left=-right, top=-bottom

Camera
coordinates
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Perspective View Volume

Symmetrical view volume

 Only 4 parameters
 Vertical field of view (FOV)
 Image aspect ratio (width/height)
 Near, far clipping planes

 Demo link

-z
FOV

y

z=-near

z=-far

y=top
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𝜃𝜃

aspect ratio= right − left
top − bottom

=
right
top

 

tan(FOV / 2) = top
near

𝜃𝜃

http://learnwebgl.brown37.net/08_projections/projections_perspective.html


Perspective View Volume
Rule of thumb to calculate projection matrix:
1. Convert the view-frustum to the simple symmetric projection frustum
2. Transform the simple frustum to the canonical view frustum

15 Ref: http://info.ee.surrey.ac.uk/Teaching/Courses/eem.cgi/lectures_pdf/lecture3.pdf

http://info.ee.surrey.ac.uk/Teaching/Courses/eem.cgi/lectures_pdf/lecture3.pdf


Perspective Projection Matrix
 General view frustum with 6 parameters

Camera
coordinates
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Perspective Projection Matrix
 Symmetrical view frustum with field of view, aspect 

ratio, near and far clip planes

Ppersp (FOV ,aspect,near, far) =

1
aspect ⋅ tan(FOV / 2)

0 0 0
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0 0
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Camera
coordinates

17 Ref: https://www.youtube.com/watch?v=ohksz3A00fk&t=79s

https://www.youtube.com/watch?v=ohksz3A00fk&t=79s


Projection Matrix
 How to determine if a matrix is projection matrix?
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Canonical View Volume
 Goal: create projection matrix so that
 User defined view volume is transformed into canonical 

view volume: cube [-1,1]x[-1,1]x[-1,1]
 Multiplying corner vertices of view volume by projection 

matrix and performing homogeneous divide yields corners 
of canonical view volume 

 Perspective and orthographic projection are treated 
the same way

 Canonical view volume is last stage in which 
coordinates are in 3D
 Next step is projection to 2D frame buffer
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Canonical View Volume
 Summary so far in a demo
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https://jsantell.com/model-view-projection


Viewport Transformation
 After applying projection matrix, scene points are in normalized 

viewing coordinates
 Per definition within range [-1..1] x [-1..1] x [-1..1] 

 Next is projection from 3D to 2D (not reversible)
 Normalized viewing coordinates can be mapped to image 

(=pixel=frame buffer) coordinates
 Range depends on window (view port) size:

[x0…x1] x [y0…y1]

 Scale and translation required:

D x0 , x1, y0 , y1( )=

x1 − x0( ) 2 0 0 x0 + x1( ) 2
0 y1 − y0( ) 2 0 y0 + y1( ) 2
0 0 1 2 1 2
0 0 0 1


















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Lecture Overview
 View Volumes
 Vertex Transformation
 Rendering Pipeline
 Culling
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Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix

Object space
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Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Object space
World space



Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Object space
World space

Camera space



Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Object space
World space

Camera space
Canonical view volume



Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Object space
World space

Camera space

Image space
Canonical view volume



Complete Vertex Transformation
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Pixel coordinates:



Complete Vertex Transformation in OpenGL
 Mapping a 3D point in object coordinates to pixel 

coordinates:

 M: Object-to-world matrix
 C: camera matrix
 P: projection matrix
 D: viewport matrix
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Projection matrix

ModelView matrix



Complete Vertex Transformation in OpenGL
 ModelView matrix: C-1M
 Defined by the programmer.
 Think of the ModelView matrix as where you stand with the 

camera and the direction you point it.
 Projection matrix: P
 Think of the projection matrix as describing the attributes 

of your camera, such as field of view, focal length, etc.
 Viewport, D
 Specify via glViewport(x, y, width, height) 
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Vertex Shader Code
layout (location = 0) in vec3 position;

// ...

uniform mat4 projection;

uniform mat4 view;

uniform mat4 model;

void main() {

gl_Position = projection * view * 
model * vec4(position, 1.0);

// ...

}31



The Complete Vertex Transformation
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Model 
Matrix

Camera 
Matrix

Projection 
Matrix

Viewport 
Matrix

Object 
Coordinates

World 
Coordinates

Camera 
Coordinates

Canonical 
View Volume 
Coordinates

Window 
Coordinates

glm::lookAt

e.g. glm::perspective

glViewport

model



Visibility Culling



Visibility Culling
 Goal: 

Discard geometry that does not need to be drawn to 
speed up rendering

 Types of culling:
 View frustum culling
 Small object culling
 Degenerate culling
 Backface culling
 Occlusion culling
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View Frustum Culling
 Triangles outside of view frustum are off-screen
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Images: SGI OpenGL Optimizer Programmer's Guide



Videos
 Rendering Optimizations - Frustum Culling 
 http://www.youtube.com/watch?v=kvVHp9wMAO8

 View Frustum Culling Demo 
 http://www.youtube.com/watch?v=bJrYTBGpwic

 View Frustum Culling in Action
 http://giant.gfycat.com/InexperiencedMadKiskadee.webm
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http://www.youtube.com/watch?v=kvVHp9wMAO8
http://www.youtube.com/watch?v=bJrYTBGpwic
http://giant.gfycat.com/InexperiencedMadKiskadee.webm


Bounding Volumes
 Simple shape that 

completely
encloses an object

 Generally a box or 
sphere
 Easier to calculate culling for 

spheres
 Easier to calculate tight fits 

for boxes
 Intersect bounding

volume with view frustum 
instead of each primitive
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Bounding Box
 How to cull objects consisting of may polygons?
 Cull bounding box
 Rectangular box, parallel to object space coordinate planes
 Box is smallest box containing the entire object
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Image: SGI OpenGL Optimizer Programmer's Guide



View Frustum Culling
 Frustum defined by 6 planes
 Each plane divides space into 

“outside”, “inside”
 Check each object against 

each plane
 Outside, inside, intersecting

 If “outside” of at least one plane
 Outside the frustum

 If “inside” all planes
 Inside the frustum

 Else partly inside and partly out
View frustum
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•p

• x

Distance to Plane
 A plane is described by a point p on the plane and a unit 

normal n
 Find the (perpendicular) distance from point x to the 

plane


n
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•p

• x

Distance to Plane
 The distance is the length of the projection of x-p

onto n

dist = x − p( )
 

⋅
n


n x−p

 
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 The distance has a sign
 positive on the side of the plane the normal points to
 negative on the opposite side
 zero exactly on the plane

 Divides 3D space into two infinite half-spaces

•p

Distance to Plane

dist(x) = x − p( )
 

⋅
n 

n Positive

Negative
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Distance to Plane
 Simplification

 d is independent of x
 d is distance from the origin to the plane
 We can represent a plane with just d and n
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Frustum With Signed Planes

 Normal of each plane points outside
 “outside” means positive distance
 “inside” means negative distance
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 For sphere with radius r and origin x, test the distance to 
the origin, and see if it is beyond the radius

 Three cases:
 dist(x)>r

 completely above

 dist(x)<-r
 completely below

 -r<dist(x)<r
 intersects

Test Sphere and Plane

•


n Positive

Negative
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Culling Summary
 Transform view frustum plane equations in camera space.
 Pre-compute the normal n and value d for each of the six 

planes.
 Given a sphere with center x and radius r in camera space.
 For each plane:

 if dist(x) > r: sphere is outside!  (no need to continue loop)
 add 1 to count if dist(x)<-r

 If we made it through the loop, check the count:
 if the count is 6, the sphere is completely inside
 otherwise the sphere intersects the frustum
 (can use a flag instead of a count)
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 Want to be able to cull the whole group quickly
 But if the group is partly in and partly out, want to be 

able to cull individual objects

Culling Groups of Objects
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Hierarchical Bounding Volumes
 Given hierarchy of objects
 Bounding volume of each node encloses the bounding 

volumes of all its children
 Start by testing the outermost bounding volume
 If it is entirely outside, don’t draw the group at all
 If it is entirely inside, draw the whole group
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 If the bounding volume is partly inside and partly 
outside
 Test each child’s bounding volume individually
 If the child is in, draw it; if it’s out cull it; if it’s partly in and 

partly out, recurse.
 If recursion reaches a leaf node, draw it normally

Hierarchical Culling
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Video
 Math for Game Developers - Frustum Culling 
 http://www.youtube.com/watch?v=4p-E_31XOPM
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Find the frustum planes
 p – the camera position

 d – a vector with the direction of the camera’s view ray. In here it is 
assumed that this vector has been normalized

 Wnear – the “width” of the near plane

 nearDist – the distance from the camera to the near plane

 farDist – the distance from the camera to the far plane

 up – the up vector obtained by normalizing (ux, uy, uz) from the last 
parameters of gluLookAt

 right – the right vector obtained by cross product between up and d.
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nc = p + d * nearDist
fc = p + d * farDist



Find the frustum planes

52

 near plane: d as normal, nc as a point on the plane.
 far plane: –d as normal, fc as a point on the plane.
 right plane: p as a point on the plane. normal can be found 

in this tutorial, the pseudocode is copied here.

nc = p + d * nearDist
a = (nc + right * Wnear / 2) – p
a.normalize()
normalRight = up × a

nc
right

a

up

http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-extracting-the-planes/
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